Metamath Proof Explorer


Theorem sltsub2d

Description: Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses sltsubd.1 φANo
sltsubd.2 φBNo
sltsubd.3 φCNo
Assertion sltsub2d Could not format assertion : No typesetting found for |- ( ph -> ( A ( C -s B )

Proof

Step Hyp Ref Expression
1 sltsubd.1 φANo
2 sltsubd.2 φBNo
3 sltsubd.3 φCNo
4 sltsub2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( C -s B ) ( A ( C -s B )
5 1 2 3 4 syl3anc Could not format ( ph -> ( A ( C -s B ) ( A ( C -s B )