Metamath Proof Explorer


Theorem smff

Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smff.s φ S SAlg
smff.f φ F SMblFn S
smff.d D = dom F
Assertion smff φ F : D

Proof

Step Hyp Ref Expression
1 smff.s φ S SAlg
2 smff.f φ F SMblFn S
3 smff.d D = dom F
4 1 3 issmf φ F SMblFn S D S F : D a x D | F x < a S 𝑡 D
5 2 4 mpbid φ D S F : D a x D | F x < a S 𝑡 D
6 5 simp2d φ F : D