Metamath Proof Explorer


Theorem smgrpmgm

Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)

Ref Expression
Hypothesis smgrpmgm.1 X=domdomG
Assertion smgrpmgm GSemiGrpG:X×XX

Proof

Step Hyp Ref Expression
1 smgrpmgm.1 X=domdomG
2 1 issmgrpOLD GSemiGrpGSemiGrpG:X×XXxXyXzXxGyGz=xGyGz
3 simpl G:X×XXxXyXzXxGyGz=xGyGzG:X×XX
4 2 3 syl6bi GSemiGrpGSemiGrpG:X×XX
5 4 pm2.43i GSemiGrpG:X×XX