Metamath Proof Explorer


Theorem smndex1ibas

Description: The modulo function I is an endofunction on NN0 . (Contributed by AV, 12-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I=x0xmodN
Assertion smndex1ibas IBaseM

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I=x0xmodN
4 eqid x0xmodN=x0xmodN
5 nn0z x0x
6 2 a1i x0N
7 5 6 zmodcld x0xmodN0
8 4 7 fmpti x0xmodN:00
9 nn0ex 0V
10 9 9 elmap x0xmodN00x0xmodN:00
11 8 10 mpbir x0xmodN00
12 eqid BaseM=BaseM
13 1 12 efmndbas BaseM=00
14 11 3 13 3eltr4i IBaseM