Metamath Proof Explorer


Theorem sn-suprcld

Description: suprcld without ax-mulcom , proven trivially from sn-sup3d . (Contributed by SN, 29-Jun-2025)

Ref Expression
Hypotheses sn-sup3d.1 φ A
sn-sup3d.2 φ A
sn-sup3d.3 φ x y A y x
Assertion sn-suprcld φ sup A <

Proof

Step Hyp Ref Expression
1 sn-sup3d.1 φ A
2 sn-sup3d.2 φ A
3 sn-sup3d.3 φ x y A y x
4 ltso < Or
5 4 a1i φ < Or
6 1 2 3 sn-sup3d φ x y A ¬ x < y y y < x z A y < z
7 5 6 supcl φ sup A <