Metamath Proof Explorer


Theorem sn1dom

Description: A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023)

Ref Expression
Assertion sn1dom A1𝑜

Proof

Step Hyp Ref Expression
1 ensn1g AVA1𝑜
2 1on 1𝑜On
3 domrefg 1𝑜On1𝑜1𝑜
4 2 3 ax-mp 1𝑜1𝑜
5 endomtr A1𝑜1𝑜1𝑜A1𝑜
6 1 4 5 sylancl AVA1𝑜
7 snprc ¬AVA=
8 snex AV
9 eqeng AVA=A
10 8 9 ax-mp A=A
11 7 10 sylbi ¬AVA
12 0domg 1𝑜On1𝑜
13 2 12 ax-mp 1𝑜
14 endomtr A1𝑜A1𝑜
15 11 13 14 sylancl ¬AVA1𝑜
16 6 15 pm2.61i A1𝑜