Step |
Hyp |
Ref |
Expression |
1 |
|
ensn1g |
|- ( A e. _V -> { A } ~~ 1o ) |
2 |
|
1on |
|- 1o e. On |
3 |
|
domrefg |
|- ( 1o e. On -> 1o ~<_ 1o ) |
4 |
2 3
|
ax-mp |
|- 1o ~<_ 1o |
5 |
|
endomtr |
|- ( ( { A } ~~ 1o /\ 1o ~<_ 1o ) -> { A } ~<_ 1o ) |
6 |
1 4 5
|
sylancl |
|- ( A e. _V -> { A } ~<_ 1o ) |
7 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
8 |
|
snex |
|- { A } e. _V |
9 |
|
eqeng |
|- ( { A } e. _V -> ( { A } = (/) -> { A } ~~ (/) ) ) |
10 |
8 9
|
ax-mp |
|- ( { A } = (/) -> { A } ~~ (/) ) |
11 |
7 10
|
sylbi |
|- ( -. A e. _V -> { A } ~~ (/) ) |
12 |
|
0domg |
|- ( 1o e. On -> (/) ~<_ 1o ) |
13 |
2 12
|
ax-mp |
|- (/) ~<_ 1o |
14 |
|
endomtr |
|- ( ( { A } ~~ (/) /\ (/) ~<_ 1o ) -> { A } ~<_ 1o ) |
15 |
11 13 14
|
sylancl |
|- ( -. A e. _V -> { A } ~<_ 1o ) |
16 |
6 15
|
pm2.61i |
|- { A } ~<_ 1o |