Metamath Proof Explorer


Theorem sn1dom

Description: A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023)

Ref Expression
Assertion sn1dom
|- { A } ~<_ 1o

Proof

Step Hyp Ref Expression
1 ensn1g
 |-  ( A e. _V -> { A } ~~ 1o )
2 1on
 |-  1o e. On
3 domrefg
 |-  ( 1o e. On -> 1o ~<_ 1o )
4 2 3 ax-mp
 |-  1o ~<_ 1o
5 endomtr
 |-  ( ( { A } ~~ 1o /\ 1o ~<_ 1o ) -> { A } ~<_ 1o )
6 1 4 5 sylancl
 |-  ( A e. _V -> { A } ~<_ 1o )
7 snprc
 |-  ( -. A e. _V <-> { A } = (/) )
8 snex
 |-  { A } e. _V
9 eqeng
 |-  ( { A } e. _V -> ( { A } = (/) -> { A } ~~ (/) ) )
10 8 9 ax-mp
 |-  ( { A } = (/) -> { A } ~~ (/) )
11 7 10 sylbi
 |-  ( -. A e. _V -> { A } ~~ (/) )
12 0domg
 |-  ( 1o e. On -> (/) ~<_ 1o )
13 2 12 ax-mp
 |-  (/) ~<_ 1o
14 endomtr
 |-  ( ( { A } ~~ (/) /\ (/) ~<_ 1o ) -> { A } ~<_ 1o )
15 11 13 14 sylancl
 |-  ( -. A e. _V -> { A } ~<_ 1o )
16 6 15 pm2.61i
 |-  { A } ~<_ 1o