| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ensn1g |
⊢ ( 𝐴 ∈ V → { 𝐴 } ≈ 1o ) |
| 2 |
|
1on |
⊢ 1o ∈ On |
| 3 |
|
domrefg |
⊢ ( 1o ∈ On → 1o ≼ 1o ) |
| 4 |
2 3
|
ax-mp |
⊢ 1o ≼ 1o |
| 5 |
|
endomtr |
⊢ ( ( { 𝐴 } ≈ 1o ∧ 1o ≼ 1o ) → { 𝐴 } ≼ 1o ) |
| 6 |
1 4 5
|
sylancl |
⊢ ( 𝐴 ∈ V → { 𝐴 } ≼ 1o ) |
| 7 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
| 8 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 9 |
|
eqeng |
⊢ ( { 𝐴 } ∈ V → ( { 𝐴 } = ∅ → { 𝐴 } ≈ ∅ ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( { 𝐴 } = ∅ → { 𝐴 } ≈ ∅ ) |
| 11 |
7 10
|
sylbi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } ≈ ∅ ) |
| 12 |
|
0domg |
⊢ ( 1o ∈ On → ∅ ≼ 1o ) |
| 13 |
2 12
|
ax-mp |
⊢ ∅ ≼ 1o |
| 14 |
|
endomtr |
⊢ ( ( { 𝐴 } ≈ ∅ ∧ ∅ ≼ 1o ) → { 𝐴 } ≼ 1o ) |
| 15 |
11 13 14
|
sylancl |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } ≼ 1o ) |
| 16 |
6 15
|
pm2.61i |
⊢ { 𝐴 } ≼ 1o |