Metamath Proof Explorer


Theorem pr2dom

Description: An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023)

Ref Expression
Assertion pr2dom { 𝐴 , 𝐵 } ≼ 2o

Proof

Step Hyp Ref Expression
1 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
2 snex { 𝐴 } ∈ V
3 snex { 𝐵 } ∈ V
4 undjudom ( ( { 𝐴 } ∈ V ∧ { 𝐵 } ∈ V ) → ( { 𝐴 } ∪ { 𝐵 } ) ≼ ( { 𝐴 } ⊔ { 𝐵 } ) )
5 2 3 4 mp2an ( { 𝐴 } ∪ { 𝐵 } ) ≼ ( { 𝐴 } ⊔ { 𝐵 } )
6 sn1dom { 𝐴 } ≼ 1o
7 djudom1 ( ( { 𝐴 } ≼ 1o ∧ { 𝐵 } ∈ V ) → ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ { 𝐵 } ) )
8 6 3 7 mp2an ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ { 𝐵 } )
9 sn1dom { 𝐵 } ≼ 1o
10 1on 1o ∈ On
11 djudom2 ( ( { 𝐵 } ≼ 1o ∧ 1o ∈ On ) → ( 1o ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) )
12 9 10 11 mp2an ( 1o ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o )
13 domtr ( ( ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ { 𝐵 } ) ∧ ( 1o ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) ) → ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) )
14 8 12 13 mp2an ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o )
15 dju1p1e2 ( 1o ⊔ 1o ) ≈ 2o
16 domentr ( ( ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) ∧ ( 1o ⊔ 1o ) ≈ 2o ) → ( { 𝐴 } ⊔ { 𝐵 } ) ≼ 2o )
17 14 15 16 mp2an ( { 𝐴 } ⊔ { 𝐵 } ) ≼ 2o
18 domtr ( ( ( { 𝐴 } ∪ { 𝐵 } ) ≼ ( { 𝐴 } ⊔ { 𝐵 } ) ∧ ( { 𝐴 } ⊔ { 𝐵 } ) ≼ 2o ) → ( { 𝐴 } ∪ { 𝐵 } ) ≼ 2o )
19 5 17 18 mp2an ( { 𝐴 } ∪ { 𝐵 } ) ≼ 2o
20 1 19 eqbrtri { 𝐴 , 𝐵 } ≼ 2o