Step |
Hyp |
Ref |
Expression |
1 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
2 |
|
snex |
⊢ { 𝐴 } ∈ V |
3 |
|
snex |
⊢ { 𝐵 } ∈ V |
4 |
|
undjudom |
⊢ ( ( { 𝐴 } ∈ V ∧ { 𝐵 } ∈ V ) → ( { 𝐴 } ∪ { 𝐵 } ) ≼ ( { 𝐴 } ⊔ { 𝐵 } ) ) |
5 |
2 3 4
|
mp2an |
⊢ ( { 𝐴 } ∪ { 𝐵 } ) ≼ ( { 𝐴 } ⊔ { 𝐵 } ) |
6 |
|
sn1dom |
⊢ { 𝐴 } ≼ 1o |
7 |
|
djudom1 |
⊢ ( ( { 𝐴 } ≼ 1o ∧ { 𝐵 } ∈ V ) → ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ { 𝐵 } ) ) |
8 |
6 3 7
|
mp2an |
⊢ ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ { 𝐵 } ) |
9 |
|
sn1dom |
⊢ { 𝐵 } ≼ 1o |
10 |
|
1on |
⊢ 1o ∈ On |
11 |
|
djudom2 |
⊢ ( ( { 𝐵 } ≼ 1o ∧ 1o ∈ On ) → ( 1o ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) ) |
12 |
9 10 11
|
mp2an |
⊢ ( 1o ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) |
13 |
|
domtr |
⊢ ( ( ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ { 𝐵 } ) ∧ ( 1o ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) ) → ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) ) |
14 |
8 12 13
|
mp2an |
⊢ ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) |
15 |
|
dju1p1e2 |
⊢ ( 1o ⊔ 1o ) ≈ 2o |
16 |
|
domentr |
⊢ ( ( ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) ∧ ( 1o ⊔ 1o ) ≈ 2o ) → ( { 𝐴 } ⊔ { 𝐵 } ) ≼ 2o ) |
17 |
14 15 16
|
mp2an |
⊢ ( { 𝐴 } ⊔ { 𝐵 } ) ≼ 2o |
18 |
|
domtr |
⊢ ( ( ( { 𝐴 } ∪ { 𝐵 } ) ≼ ( { 𝐴 } ⊔ { 𝐵 } ) ∧ ( { 𝐴 } ⊔ { 𝐵 } ) ≼ 2o ) → ( { 𝐴 } ∪ { 𝐵 } ) ≼ 2o ) |
19 |
5 17 18
|
mp2an |
⊢ ( { 𝐴 } ∪ { 𝐵 } ) ≼ 2o |
20 |
1 19
|
eqbrtri |
⊢ { 𝐴 , 𝐵 } ≼ 2o |