| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
| 2 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 3 |
|
snex |
⊢ { 𝐵 } ∈ V |
| 4 |
|
undjudom |
⊢ ( ( { 𝐴 } ∈ V ∧ { 𝐵 } ∈ V ) → ( { 𝐴 } ∪ { 𝐵 } ) ≼ ( { 𝐴 } ⊔ { 𝐵 } ) ) |
| 5 |
2 3 4
|
mp2an |
⊢ ( { 𝐴 } ∪ { 𝐵 } ) ≼ ( { 𝐴 } ⊔ { 𝐵 } ) |
| 6 |
|
sn1dom |
⊢ { 𝐴 } ≼ 1o |
| 7 |
|
djudom1 |
⊢ ( ( { 𝐴 } ≼ 1o ∧ { 𝐵 } ∈ V ) → ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ { 𝐵 } ) ) |
| 8 |
6 3 7
|
mp2an |
⊢ ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ { 𝐵 } ) |
| 9 |
|
sn1dom |
⊢ { 𝐵 } ≼ 1o |
| 10 |
|
1on |
⊢ 1o ∈ On |
| 11 |
|
djudom2 |
⊢ ( ( { 𝐵 } ≼ 1o ∧ 1o ∈ On ) → ( 1o ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) ) |
| 12 |
9 10 11
|
mp2an |
⊢ ( 1o ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) |
| 13 |
|
domtr |
⊢ ( ( ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ { 𝐵 } ) ∧ ( 1o ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) ) → ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) ) |
| 14 |
8 12 13
|
mp2an |
⊢ ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) |
| 15 |
|
dju1p1e2 |
⊢ ( 1o ⊔ 1o ) ≈ 2o |
| 16 |
|
domentr |
⊢ ( ( ( { 𝐴 } ⊔ { 𝐵 } ) ≼ ( 1o ⊔ 1o ) ∧ ( 1o ⊔ 1o ) ≈ 2o ) → ( { 𝐴 } ⊔ { 𝐵 } ) ≼ 2o ) |
| 17 |
14 15 16
|
mp2an |
⊢ ( { 𝐴 } ⊔ { 𝐵 } ) ≼ 2o |
| 18 |
|
domtr |
⊢ ( ( ( { 𝐴 } ∪ { 𝐵 } ) ≼ ( { 𝐴 } ⊔ { 𝐵 } ) ∧ ( { 𝐴 } ⊔ { 𝐵 } ) ≼ 2o ) → ( { 𝐴 } ∪ { 𝐵 } ) ≼ 2o ) |
| 19 |
5 17 18
|
mp2an |
⊢ ( { 𝐴 } ∪ { 𝐵 } ) ≼ 2o |
| 20 |
1 19
|
eqbrtri |
⊢ { 𝐴 , 𝐵 } ≼ 2o |