Metamath Proof Explorer


Theorem pr2dom

Description: An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023)

Ref Expression
Assertion pr2dom
|- { A , B } ~<_ 2o

Proof

Step Hyp Ref Expression
1 df-pr
 |-  { A , B } = ( { A } u. { B } )
2 snex
 |-  { A } e. _V
3 snex
 |-  { B } e. _V
4 undjudom
 |-  ( ( { A } e. _V /\ { B } e. _V ) -> ( { A } u. { B } ) ~<_ ( { A } |_| { B } ) )
5 2 3 4 mp2an
 |-  ( { A } u. { B } ) ~<_ ( { A } |_| { B } )
6 sn1dom
 |-  { A } ~<_ 1o
7 djudom1
 |-  ( ( { A } ~<_ 1o /\ { B } e. _V ) -> ( { A } |_| { B } ) ~<_ ( 1o |_| { B } ) )
8 6 3 7 mp2an
 |-  ( { A } |_| { B } ) ~<_ ( 1o |_| { B } )
9 sn1dom
 |-  { B } ~<_ 1o
10 1on
 |-  1o e. On
11 djudom2
 |-  ( ( { B } ~<_ 1o /\ 1o e. On ) -> ( 1o |_| { B } ) ~<_ ( 1o |_| 1o ) )
12 9 10 11 mp2an
 |-  ( 1o |_| { B } ) ~<_ ( 1o |_| 1o )
13 domtr
 |-  ( ( ( { A } |_| { B } ) ~<_ ( 1o |_| { B } ) /\ ( 1o |_| { B } ) ~<_ ( 1o |_| 1o ) ) -> ( { A } |_| { B } ) ~<_ ( 1o |_| 1o ) )
14 8 12 13 mp2an
 |-  ( { A } |_| { B } ) ~<_ ( 1o |_| 1o )
15 dju1p1e2
 |-  ( 1o |_| 1o ) ~~ 2o
16 domentr
 |-  ( ( ( { A } |_| { B } ) ~<_ ( 1o |_| 1o ) /\ ( 1o |_| 1o ) ~~ 2o ) -> ( { A } |_| { B } ) ~<_ 2o )
17 14 15 16 mp2an
 |-  ( { A } |_| { B } ) ~<_ 2o
18 domtr
 |-  ( ( ( { A } u. { B } ) ~<_ ( { A } |_| { B } ) /\ ( { A } |_| { B } ) ~<_ 2o ) -> ( { A } u. { B } ) ~<_ 2o )
19 5 17 18 mp2an
 |-  ( { A } u. { B } ) ~<_ 2o
20 1 19 eqbrtri
 |-  { A , B } ~<_ 2o