Metamath Proof Explorer


Theorem tr3dom

Description: An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023)

Ref Expression
Assertion tr3dom
|- { A , B , C } ~<_ 3o

Proof

Step Hyp Ref Expression
1 df-tp
 |-  { A , B , C } = ( { A , B } u. { C } )
2 prex
 |-  { A , B } e. _V
3 snex
 |-  { C } e. _V
4 undjudom
 |-  ( ( { A , B } e. _V /\ { C } e. _V ) -> ( { A , B } u. { C } ) ~<_ ( { A , B } |_| { C } ) )
5 2 3 4 mp2an
 |-  ( { A , B } u. { C } ) ~<_ ( { A , B } |_| { C } )
6 pr2dom
 |-  { A , B } ~<_ 2o
7 djudom1
 |-  ( ( { A , B } ~<_ 2o /\ { C } e. _V ) -> ( { A , B } |_| { C } ) ~<_ ( 2o |_| { C } ) )
8 6 3 7 mp2an
 |-  ( { A , B } |_| { C } ) ~<_ ( 2o |_| { C } )
9 sn1dom
 |-  { C } ~<_ 1o
10 2on
 |-  2o e. On
11 djudom2
 |-  ( ( { C } ~<_ 1o /\ 2o e. On ) -> ( 2o |_| { C } ) ~<_ ( 2o |_| 1o ) )
12 9 10 11 mp2an
 |-  ( 2o |_| { C } ) ~<_ ( 2o |_| 1o )
13 domtr
 |-  ( ( ( { A , B } |_| { C } ) ~<_ ( 2o |_| { C } ) /\ ( 2o |_| { C } ) ~<_ ( 2o |_| 1o ) ) -> ( { A , B } |_| { C } ) ~<_ ( 2o |_| 1o ) )
14 8 12 13 mp2an
 |-  ( { A , B } |_| { C } ) ~<_ ( 2o |_| 1o )
15 1on
 |-  1o e. On
16 onadju
 |-  ( ( 2o e. On /\ 1o e. On ) -> ( 2o +o 1o ) ~~ ( 2o |_| 1o ) )
17 10 15 16 mp2an
 |-  ( 2o +o 1o ) ~~ ( 2o |_| 1o )
18 17 ensymi
 |-  ( 2o |_| 1o ) ~~ ( 2o +o 1o )
19 oa1suc
 |-  ( 2o e. On -> ( 2o +o 1o ) = suc 2o )
20 10 19 ax-mp
 |-  ( 2o +o 1o ) = suc 2o
21 df-3o
 |-  3o = suc 2o
22 20 21 eqtr4i
 |-  ( 2o +o 1o ) = 3o
23 18 22 breqtri
 |-  ( 2o |_| 1o ) ~~ 3o
24 domentr
 |-  ( ( ( { A , B } |_| { C } ) ~<_ ( 2o |_| 1o ) /\ ( 2o |_| 1o ) ~~ 3o ) -> ( { A , B } |_| { C } ) ~<_ 3o )
25 14 23 24 mp2an
 |-  ( { A , B } |_| { C } ) ~<_ 3o
26 domtr
 |-  ( ( ( { A , B } u. { C } ) ~<_ ( { A , B } |_| { C } ) /\ ( { A , B } |_| { C } ) ~<_ 3o ) -> ( { A , B } u. { C } ) ~<_ 3o )
27 5 25 26 mp2an
 |-  ( { A , B } u. { C } ) ~<_ 3o
28 1 27 eqbrtri
 |-  { A , B , C } ~<_ 3o