| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-tp |  |-  { A , B , C } = ( { A , B } u. { C } ) | 
						
							| 2 |  | prex |  |-  { A , B } e. _V | 
						
							| 3 |  | snex |  |-  { C } e. _V | 
						
							| 4 |  | undjudom |  |-  ( ( { A , B } e. _V /\ { C } e. _V ) -> ( { A , B } u. { C } ) ~<_ ( { A , B } |_| { C } ) ) | 
						
							| 5 | 2 3 4 | mp2an |  |-  ( { A , B } u. { C } ) ~<_ ( { A , B } |_| { C } ) | 
						
							| 6 |  | pr2dom |  |-  { A , B } ~<_ 2o | 
						
							| 7 |  | djudom1 |  |-  ( ( { A , B } ~<_ 2o /\ { C } e. _V ) -> ( { A , B } |_| { C } ) ~<_ ( 2o |_| { C } ) ) | 
						
							| 8 | 6 3 7 | mp2an |  |-  ( { A , B } |_| { C } ) ~<_ ( 2o |_| { C } ) | 
						
							| 9 |  | sn1dom |  |-  { C } ~<_ 1o | 
						
							| 10 |  | 2on |  |-  2o e. On | 
						
							| 11 |  | djudom2 |  |-  ( ( { C } ~<_ 1o /\ 2o e. On ) -> ( 2o |_| { C } ) ~<_ ( 2o |_| 1o ) ) | 
						
							| 12 | 9 10 11 | mp2an |  |-  ( 2o |_| { C } ) ~<_ ( 2o |_| 1o ) | 
						
							| 13 |  | domtr |  |-  ( ( ( { A , B } |_| { C } ) ~<_ ( 2o |_| { C } ) /\ ( 2o |_| { C } ) ~<_ ( 2o |_| 1o ) ) -> ( { A , B } |_| { C } ) ~<_ ( 2o |_| 1o ) ) | 
						
							| 14 | 8 12 13 | mp2an |  |-  ( { A , B } |_| { C } ) ~<_ ( 2o |_| 1o ) | 
						
							| 15 |  | 1on |  |-  1o e. On | 
						
							| 16 |  | onadju |  |-  ( ( 2o e. On /\ 1o e. On ) -> ( 2o +o 1o ) ~~ ( 2o |_| 1o ) ) | 
						
							| 17 | 10 15 16 | mp2an |  |-  ( 2o +o 1o ) ~~ ( 2o |_| 1o ) | 
						
							| 18 | 17 | ensymi |  |-  ( 2o |_| 1o ) ~~ ( 2o +o 1o ) | 
						
							| 19 |  | oa1suc |  |-  ( 2o e. On -> ( 2o +o 1o ) = suc 2o ) | 
						
							| 20 | 10 19 | ax-mp |  |-  ( 2o +o 1o ) = suc 2o | 
						
							| 21 |  | df-3o |  |-  3o = suc 2o | 
						
							| 22 | 20 21 | eqtr4i |  |-  ( 2o +o 1o ) = 3o | 
						
							| 23 | 18 22 | breqtri |  |-  ( 2o |_| 1o ) ~~ 3o | 
						
							| 24 |  | domentr |  |-  ( ( ( { A , B } |_| { C } ) ~<_ ( 2o |_| 1o ) /\ ( 2o |_| 1o ) ~~ 3o ) -> ( { A , B } |_| { C } ) ~<_ 3o ) | 
						
							| 25 | 14 23 24 | mp2an |  |-  ( { A , B } |_| { C } ) ~<_ 3o | 
						
							| 26 |  | domtr |  |-  ( ( ( { A , B } u. { C } ) ~<_ ( { A , B } |_| { C } ) /\ ( { A , B } |_| { C } ) ~<_ 3o ) -> ( { A , B } u. { C } ) ~<_ 3o ) | 
						
							| 27 | 5 25 26 | mp2an |  |-  ( { A , B } u. { C } ) ~<_ 3o | 
						
							| 28 | 1 27 | eqbrtri |  |-  { A , B , C } ~<_ 3o |