Step |
Hyp |
Ref |
Expression |
1 |
|
df-tp |
|- { A , B , C } = ( { A , B } u. { C } ) |
2 |
|
prex |
|- { A , B } e. _V |
3 |
|
snex |
|- { C } e. _V |
4 |
|
undjudom |
|- ( ( { A , B } e. _V /\ { C } e. _V ) -> ( { A , B } u. { C } ) ~<_ ( { A , B } |_| { C } ) ) |
5 |
2 3 4
|
mp2an |
|- ( { A , B } u. { C } ) ~<_ ( { A , B } |_| { C } ) |
6 |
|
pr2dom |
|- { A , B } ~<_ 2o |
7 |
|
djudom1 |
|- ( ( { A , B } ~<_ 2o /\ { C } e. _V ) -> ( { A , B } |_| { C } ) ~<_ ( 2o |_| { C } ) ) |
8 |
6 3 7
|
mp2an |
|- ( { A , B } |_| { C } ) ~<_ ( 2o |_| { C } ) |
9 |
|
sn1dom |
|- { C } ~<_ 1o |
10 |
|
2on |
|- 2o e. On |
11 |
|
djudom2 |
|- ( ( { C } ~<_ 1o /\ 2o e. On ) -> ( 2o |_| { C } ) ~<_ ( 2o |_| 1o ) ) |
12 |
9 10 11
|
mp2an |
|- ( 2o |_| { C } ) ~<_ ( 2o |_| 1o ) |
13 |
|
domtr |
|- ( ( ( { A , B } |_| { C } ) ~<_ ( 2o |_| { C } ) /\ ( 2o |_| { C } ) ~<_ ( 2o |_| 1o ) ) -> ( { A , B } |_| { C } ) ~<_ ( 2o |_| 1o ) ) |
14 |
8 12 13
|
mp2an |
|- ( { A , B } |_| { C } ) ~<_ ( 2o |_| 1o ) |
15 |
|
1on |
|- 1o e. On |
16 |
|
onadju |
|- ( ( 2o e. On /\ 1o e. On ) -> ( 2o +o 1o ) ~~ ( 2o |_| 1o ) ) |
17 |
10 15 16
|
mp2an |
|- ( 2o +o 1o ) ~~ ( 2o |_| 1o ) |
18 |
17
|
ensymi |
|- ( 2o |_| 1o ) ~~ ( 2o +o 1o ) |
19 |
|
oa1suc |
|- ( 2o e. On -> ( 2o +o 1o ) = suc 2o ) |
20 |
10 19
|
ax-mp |
|- ( 2o +o 1o ) = suc 2o |
21 |
|
df-3o |
|- 3o = suc 2o |
22 |
20 21
|
eqtr4i |
|- ( 2o +o 1o ) = 3o |
23 |
18 22
|
breqtri |
|- ( 2o |_| 1o ) ~~ 3o |
24 |
|
domentr |
|- ( ( ( { A , B } |_| { C } ) ~<_ ( 2o |_| 1o ) /\ ( 2o |_| 1o ) ~~ 3o ) -> ( { A , B } |_| { C } ) ~<_ 3o ) |
25 |
14 23 24
|
mp2an |
|- ( { A , B } |_| { C } ) ~<_ 3o |
26 |
|
domtr |
|- ( ( ( { A , B } u. { C } ) ~<_ ( { A , B } |_| { C } ) /\ ( { A , B } |_| { C } ) ~<_ 3o ) -> ( { A , B } u. { C } ) ~<_ 3o ) |
27 |
5 25 26
|
mp2an |
|- ( { A , B } u. { C } ) ~<_ 3o |
28 |
1 27
|
eqbrtri |
|- { A , B , C } ~<_ 3o |