| Step |
Hyp |
Ref |
Expression |
| 1 |
|
enrefg |
|- ( A e. On -> A ~~ A ) |
| 2 |
1
|
adantr |
|- ( ( A e. On /\ B e. On ) -> A ~~ A ) |
| 3 |
|
simpr |
|- ( ( A e. On /\ B e. On ) -> B e. On ) |
| 4 |
|
eqid |
|- ( x e. B |-> ( A +o x ) ) = ( x e. B |-> ( A +o x ) ) |
| 5 |
4
|
oacomf1olem |
|- ( ( B e. On /\ A e. On ) -> ( ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) /\ ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) ) |
| 6 |
5
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) /\ ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) ) |
| 7 |
6
|
simpld |
|- ( ( A e. On /\ B e. On ) -> ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) ) |
| 8 |
|
f1oeng |
|- ( ( B e. On /\ ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) ) -> B ~~ ran ( x e. B |-> ( A +o x ) ) ) |
| 9 |
3 7 8
|
syl2anc |
|- ( ( A e. On /\ B e. On ) -> B ~~ ran ( x e. B |-> ( A +o x ) ) ) |
| 10 |
|
incom |
|- ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = ( ran ( x e. B |-> ( A +o x ) ) i^i A ) |
| 11 |
6
|
simprd |
|- ( ( A e. On /\ B e. On ) -> ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) |
| 12 |
10 11
|
eqtrid |
|- ( ( A e. On /\ B e. On ) -> ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = (/) ) |
| 13 |
|
djuenun |
|- ( ( A ~~ A /\ B ~~ ran ( x e. B |-> ( A +o x ) ) /\ ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = (/) ) -> ( A |_| B ) ~~ ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |
| 14 |
2 9 12 13
|
syl3anc |
|- ( ( A e. On /\ B e. On ) -> ( A |_| B ) ~~ ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |
| 15 |
|
oarec |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |
| 16 |
14 15
|
breqtrrd |
|- ( ( A e. On /\ B e. On ) -> ( A |_| B ) ~~ ( A +o B ) ) |
| 17 |
16
|
ensymd |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) ~~ ( A |_| B ) ) |