Step |
Hyp |
Ref |
Expression |
1 |
|
enrefg |
|- ( A e. On -> A ~~ A ) |
2 |
1
|
adantr |
|- ( ( A e. On /\ B e. On ) -> A ~~ A ) |
3 |
|
simpr |
|- ( ( A e. On /\ B e. On ) -> B e. On ) |
4 |
|
eqid |
|- ( x e. B |-> ( A +o x ) ) = ( x e. B |-> ( A +o x ) ) |
5 |
4
|
oacomf1olem |
|- ( ( B e. On /\ A e. On ) -> ( ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) /\ ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) ) |
6 |
5
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) /\ ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) ) |
7 |
6
|
simpld |
|- ( ( A e. On /\ B e. On ) -> ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) ) |
8 |
|
f1oeng |
|- ( ( B e. On /\ ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) ) -> B ~~ ran ( x e. B |-> ( A +o x ) ) ) |
9 |
3 7 8
|
syl2anc |
|- ( ( A e. On /\ B e. On ) -> B ~~ ran ( x e. B |-> ( A +o x ) ) ) |
10 |
|
incom |
|- ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = ( ran ( x e. B |-> ( A +o x ) ) i^i A ) |
11 |
6
|
simprd |
|- ( ( A e. On /\ B e. On ) -> ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) |
12 |
10 11
|
eqtrid |
|- ( ( A e. On /\ B e. On ) -> ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = (/) ) |
13 |
|
djuenun |
|- ( ( A ~~ A /\ B ~~ ran ( x e. B |-> ( A +o x ) ) /\ ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = (/) ) -> ( A |_| B ) ~~ ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |
14 |
2 9 12 13
|
syl3anc |
|- ( ( A e. On /\ B e. On ) -> ( A |_| B ) ~~ ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |
15 |
|
oarec |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |
16 |
14 15
|
breqtrrd |
|- ( ( A e. On /\ B e. On ) -> ( A |_| B ) ~~ ( A +o B ) ) |
17 |
16
|
ensymd |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) ~~ ( A |_| B ) ) |