Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023) (Proof shortened by SN, 16-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | ensucne0 | |- ( A ~~ suc B -> A =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsuceq0 | |- suc B =/= (/) |
|
2 | ensymb | |- ( (/) ~~ suc B <-> suc B ~~ (/) ) |
|
3 | en0 | |- ( suc B ~~ (/) <-> suc B = (/) ) |
|
4 | 2 3 | bitri | |- ( (/) ~~ suc B <-> suc B = (/) ) |
5 | 1 4 | nemtbir | |- -. (/) ~~ suc B |
6 | breq1 | |- ( A = (/) -> ( A ~~ suc B <-> (/) ~~ suc B ) ) |
|
7 | 5 6 | mtbiri | |- ( A = (/) -> -. A ~~ suc B ) |
8 | 7 | necon2ai | |- ( A ~~ suc B -> A =/= (/) ) |