Metamath Proof Explorer
		
		
		
		Description:  A class equinumerous to a successor is never empty.  (Contributed by RP, 11-Nov-2023)  (Proof shortened by SN, 16-Nov-2023)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | ensucne0 | ⊢  ( 𝐴  ≈  suc  𝐵  →  𝐴  ≠  ∅ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nsuceq0 | ⊢ suc  𝐵  ≠  ∅ | 
						
							| 2 |  | en0r | ⊢ ( ∅  ≈  suc  𝐵  ↔  suc  𝐵  =  ∅ ) | 
						
							| 3 | 1 2 | nemtbir | ⊢ ¬  ∅  ≈  suc  𝐵 | 
						
							| 4 |  | breq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ≈  suc  𝐵  ↔  ∅  ≈  suc  𝐵 ) ) | 
						
							| 5 | 3 4 | mtbiri | ⊢ ( 𝐴  =  ∅  →  ¬  𝐴  ≈  suc  𝐵 ) | 
						
							| 6 | 5 | necon2ai | ⊢ ( 𝐴  ≈  suc  𝐵  →  𝐴  ≠  ∅ ) |