Metamath Proof Explorer
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023) (Proof shortened by SN, 16-Nov-2023)
|
|
Ref |
Expression |
|
Assertion |
ensucne0 |
⊢ ( 𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nsuceq0 |
⊢ suc 𝐵 ≠ ∅ |
| 2 |
|
en0r |
⊢ ( ∅ ≈ suc 𝐵 ↔ suc 𝐵 = ∅ ) |
| 3 |
1 2
|
nemtbir |
⊢ ¬ ∅ ≈ suc 𝐵 |
| 4 |
|
breq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ≈ suc 𝐵 ↔ ∅ ≈ suc 𝐵 ) ) |
| 5 |
3 4
|
mtbiri |
⊢ ( 𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵 ) |
| 6 |
5
|
necon2ai |
⊢ ( 𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅ ) |