| Step | Hyp | Ref | Expression | 
						
							| 1 |  | encv | ⊢ ( 𝐴  ≈  suc  𝐵  →  ( 𝐴  ∈  V  ∧  suc  𝐵  ∈  V ) ) | 
						
							| 2 | 1 | simprd | ⊢ ( 𝐴  ≈  suc  𝐵  →  suc  𝐵  ∈  V ) | 
						
							| 3 |  | en0 | ⊢ ( 𝐴  ≈  ∅  ↔  𝐴  =  ∅ ) | 
						
							| 4 | 3 | biimpri | ⊢ ( 𝐴  =  ∅  →  𝐴  ≈  ∅ ) | 
						
							| 5 | 4 | a1i | ⊢ ( suc  𝐵  ∈  V  →  ( 𝐴  =  ∅  →  𝐴  ≈  ∅ ) ) | 
						
							| 6 |  | nsuceq0 | ⊢ suc  𝐵  ≠  ∅ | 
						
							| 7 |  | 0sdomg | ⊢ ( suc  𝐵  ∈  V  →  ( ∅  ≺  suc  𝐵  ↔  suc  𝐵  ≠  ∅ ) ) | 
						
							| 8 | 6 7 | mpbiri | ⊢ ( suc  𝐵  ∈  V  →  ∅  ≺  suc  𝐵 ) | 
						
							| 9 | 5 8 | jctird | ⊢ ( suc  𝐵  ∈  V  →  ( 𝐴  =  ∅  →  ( 𝐴  ≈  ∅  ∧  ∅  ≺  suc  𝐵 ) ) ) | 
						
							| 10 |  | ensdomtr | ⊢ ( ( 𝐴  ≈  ∅  ∧  ∅  ≺  suc  𝐵 )  →  𝐴  ≺  suc  𝐵 ) | 
						
							| 11 |  | sdomnen | ⊢ ( 𝐴  ≺  suc  𝐵  →  ¬  𝐴  ≈  suc  𝐵 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐴  ≈  ∅  ∧  ∅  ≺  suc  𝐵 )  →  ¬  𝐴  ≈  suc  𝐵 ) | 
						
							| 13 | 9 12 | syl6 | ⊢ ( suc  𝐵  ∈  V  →  ( 𝐴  =  ∅  →  ¬  𝐴  ≈  suc  𝐵 ) ) | 
						
							| 14 | 13 | necon2ad | ⊢ ( suc  𝐵  ∈  V  →  ( 𝐴  ≈  suc  𝐵  →  𝐴  ≠  ∅ ) ) | 
						
							| 15 | 2 14 | mpcom | ⊢ ( 𝐴  ≈  suc  𝐵  →  𝐴  ≠  ∅ ) |