Step |
Hyp |
Ref |
Expression |
1 |
|
encv |
⊢ ( 𝐴 ≈ suc 𝐵 → ( 𝐴 ∈ V ∧ suc 𝐵 ∈ V ) ) |
2 |
1
|
simprd |
⊢ ( 𝐴 ≈ suc 𝐵 → suc 𝐵 ∈ V ) |
3 |
|
en0 |
⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) |
4 |
3
|
biimpri |
⊢ ( 𝐴 = ∅ → 𝐴 ≈ ∅ ) |
5 |
4
|
a1i |
⊢ ( suc 𝐵 ∈ V → ( 𝐴 = ∅ → 𝐴 ≈ ∅ ) ) |
6 |
|
nsuceq0 |
⊢ suc 𝐵 ≠ ∅ |
7 |
|
0sdomg |
⊢ ( suc 𝐵 ∈ V → ( ∅ ≺ suc 𝐵 ↔ suc 𝐵 ≠ ∅ ) ) |
8 |
6 7
|
mpbiri |
⊢ ( suc 𝐵 ∈ V → ∅ ≺ suc 𝐵 ) |
9 |
5 8
|
jctird |
⊢ ( suc 𝐵 ∈ V → ( 𝐴 = ∅ → ( 𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵 ) ) ) |
10 |
|
ensdomtr |
⊢ ( ( 𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵 ) → 𝐴 ≺ suc 𝐵 ) |
11 |
|
sdomnen |
⊢ ( 𝐴 ≺ suc 𝐵 → ¬ 𝐴 ≈ suc 𝐵 ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵 ) → ¬ 𝐴 ≈ suc 𝐵 ) |
13 |
9 12
|
syl6 |
⊢ ( suc 𝐵 ∈ V → ( 𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵 ) ) |
14 |
13
|
necon2ad |
⊢ ( suc 𝐵 ∈ V → ( 𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅ ) ) |
15 |
2 14
|
mpcom |
⊢ ( 𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅ ) |