Metamath Proof Explorer


Theorem ensucne0OLD

Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ensucne0OLD ( 𝐴 ≈ suc 𝐵𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 encv ( 𝐴 ≈ suc 𝐵 → ( 𝐴 ∈ V ∧ suc 𝐵 ∈ V ) )
2 1 simprd ( 𝐴 ≈ suc 𝐵 → suc 𝐵 ∈ V )
3 en0 ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ )
4 3 biimpri ( 𝐴 = ∅ → 𝐴 ≈ ∅ )
5 4 a1i ( suc 𝐵 ∈ V → ( 𝐴 = ∅ → 𝐴 ≈ ∅ ) )
6 nsuceq0 suc 𝐵 ≠ ∅
7 0sdomg ( suc 𝐵 ∈ V → ( ∅ ≺ suc 𝐵 ↔ suc 𝐵 ≠ ∅ ) )
8 6 7 mpbiri ( suc 𝐵 ∈ V → ∅ ≺ suc 𝐵 )
9 5 8 jctird ( suc 𝐵 ∈ V → ( 𝐴 = ∅ → ( 𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵 ) ) )
10 ensdomtr ( ( 𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵 ) → 𝐴 ≺ suc 𝐵 )
11 sdomnen ( 𝐴 ≺ suc 𝐵 → ¬ 𝐴 ≈ suc 𝐵 )
12 10 11 syl ( ( 𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵 ) → ¬ 𝐴 ≈ suc 𝐵 )
13 9 12 syl6 ( suc 𝐵 ∈ V → ( 𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵 ) )
14 13 necon2ad ( suc 𝐵 ∈ V → ( 𝐴 ≈ suc 𝐵𝐴 ≠ ∅ ) )
15 2 14 mpcom ( 𝐴 ≈ suc 𝐵𝐴 ≠ ∅ )