Metamath Proof Explorer


Theorem ensucne0OLD

Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ensucne0OLD A suc B A

Proof

Step Hyp Ref Expression
1 encv A suc B A V suc B V
2 1 simprd A suc B suc B V
3 en0 A A =
4 3 biimpri A = A
5 4 a1i suc B V A = A
6 nsuceq0 suc B
7 0sdomg suc B V suc B suc B
8 6 7 mpbiri suc B V suc B
9 5 8 jctird suc B V A = A suc B
10 ensdomtr A suc B A suc B
11 sdomnen A suc B ¬ A suc B
12 10 11 syl A suc B ¬ A suc B
13 9 12 syl6 suc B V A = ¬ A suc B
14 13 necon2ad suc B V A suc B A
15 2 14 mpcom A suc B A