| Step | Hyp | Ref | Expression | 
						
							| 1 |  | encv |  |-  ( A ~~ suc B -> ( A e. _V /\ suc B e. _V ) ) | 
						
							| 2 | 1 | simprd |  |-  ( A ~~ suc B -> suc B e. _V ) | 
						
							| 3 |  | en0 |  |-  ( A ~~ (/) <-> A = (/) ) | 
						
							| 4 | 3 | biimpri |  |-  ( A = (/) -> A ~~ (/) ) | 
						
							| 5 | 4 | a1i |  |-  ( suc B e. _V -> ( A = (/) -> A ~~ (/) ) ) | 
						
							| 6 |  | nsuceq0 |  |-  suc B =/= (/) | 
						
							| 7 |  | 0sdomg |  |-  ( suc B e. _V -> ( (/) ~< suc B <-> suc B =/= (/) ) ) | 
						
							| 8 | 6 7 | mpbiri |  |-  ( suc B e. _V -> (/) ~< suc B ) | 
						
							| 9 | 5 8 | jctird |  |-  ( suc B e. _V -> ( A = (/) -> ( A ~~ (/) /\ (/) ~< suc B ) ) ) | 
						
							| 10 |  | ensdomtr |  |-  ( ( A ~~ (/) /\ (/) ~< suc B ) -> A ~< suc B ) | 
						
							| 11 |  | sdomnen |  |-  ( A ~< suc B -> -. A ~~ suc B ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( A ~~ (/) /\ (/) ~< suc B ) -> -. A ~~ suc B ) | 
						
							| 13 | 9 12 | syl6 |  |-  ( suc B e. _V -> ( A = (/) -> -. A ~~ suc B ) ) | 
						
							| 14 | 13 | necon2ad |  |-  ( suc B e. _V -> ( A ~~ suc B -> A =/= (/) ) ) | 
						
							| 15 | 2 14 | mpcom |  |-  ( A ~~ suc B -> A =/= (/) ) |