Step |
Hyp |
Ref |
Expression |
1 |
|
encv |
|- ( A ~~ suc B -> ( A e. _V /\ suc B e. _V ) ) |
2 |
1
|
simprd |
|- ( A ~~ suc B -> suc B e. _V ) |
3 |
|
en0 |
|- ( A ~~ (/) <-> A = (/) ) |
4 |
3
|
biimpri |
|- ( A = (/) -> A ~~ (/) ) |
5 |
4
|
a1i |
|- ( suc B e. _V -> ( A = (/) -> A ~~ (/) ) ) |
6 |
|
nsuceq0 |
|- suc B =/= (/) |
7 |
|
0sdomg |
|- ( suc B e. _V -> ( (/) ~< suc B <-> suc B =/= (/) ) ) |
8 |
6 7
|
mpbiri |
|- ( suc B e. _V -> (/) ~< suc B ) |
9 |
5 8
|
jctird |
|- ( suc B e. _V -> ( A = (/) -> ( A ~~ (/) /\ (/) ~< suc B ) ) ) |
10 |
|
ensdomtr |
|- ( ( A ~~ (/) /\ (/) ~< suc B ) -> A ~< suc B ) |
11 |
|
sdomnen |
|- ( A ~< suc B -> -. A ~~ suc B ) |
12 |
10 11
|
syl |
|- ( ( A ~~ (/) /\ (/) ~< suc B ) -> -. A ~~ suc B ) |
13 |
9 12
|
syl6 |
|- ( suc B e. _V -> ( A = (/) -> -. A ~~ suc B ) ) |
14 |
13
|
necon2ad |
|- ( suc B e. _V -> ( A ~~ suc B -> A =/= (/) ) ) |
15 |
2 14
|
mpcom |
|- ( A ~~ suc B -> A =/= (/) ) |