Description: Let _om be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | dfom6 | |- _om = U. ( On i^i Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limom | |- Lim _om |
|
2 | limuni | |- ( Lim _om -> _om = U. _om ) |
|
3 | 1 2 | ax-mp | |- _om = U. _om |
4 | onfin2 | |- _om = ( On i^i Fin ) |
|
5 | 4 | unieqi | |- U. _om = U. ( On i^i Fin ) |
6 | 3 5 | eqtri | |- _om = U. ( On i^i Fin ) |