Description: Let _om be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfom6 | |- _om = U. ( On i^i Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limom | |- Lim _om |
|
| 2 | limuni | |- ( Lim _om -> _om = U. _om ) |
|
| 3 | 1 2 | ax-mp | |- _om = U. _om |
| 4 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 5 | 4 | unieqi | |- U. _om = U. ( On i^i Fin ) |
| 6 | 3 5 | eqtri | |- _om = U. ( On i^i Fin ) |