| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldif |
|- ( x e. ( On \ Fin ) <-> ( x e. On /\ -. x e. Fin ) ) |
| 2 |
|
omelon |
|- _om e. On |
| 3 |
|
ontri1 |
|- ( ( _om e. On /\ x e. On ) -> ( _om C_ x <-> -. x e. _om ) ) |
| 4 |
3
|
bicomd |
|- ( ( _om e. On /\ x e. On ) -> ( -. x e. _om <-> _om C_ x ) ) |
| 5 |
4
|
con1bid |
|- ( ( _om e. On /\ x e. On ) -> ( -. _om C_ x <-> x e. _om ) ) |
| 6 |
|
nnfi |
|- ( x e. _om -> x e. Fin ) |
| 7 |
5 6
|
biimtrdi |
|- ( ( _om e. On /\ x e. On ) -> ( -. _om C_ x -> x e. Fin ) ) |
| 8 |
2 7
|
mpan |
|- ( x e. On -> ( -. _om C_ x -> x e. Fin ) ) |
| 9 |
8
|
con1d |
|- ( x e. On -> ( -. x e. Fin -> _om C_ x ) ) |
| 10 |
9
|
imp |
|- ( ( x e. On /\ -. x e. Fin ) -> _om C_ x ) |
| 11 |
1 10
|
sylbi |
|- ( x e. ( On \ Fin ) -> _om C_ x ) |
| 12 |
11
|
rgen |
|- A. x e. ( On \ Fin ) _om C_ x |