| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif |  |-  ( x e. ( On \ Fin ) <-> ( x e. On /\ -. x e. Fin ) ) | 
						
							| 2 |  | omelon |  |-  _om e. On | 
						
							| 3 |  | ontri1 |  |-  ( ( _om e. On /\ x e. On ) -> ( _om C_ x <-> -. x e. _om ) ) | 
						
							| 4 | 3 | bicomd |  |-  ( ( _om e. On /\ x e. On ) -> ( -. x e. _om <-> _om C_ x ) ) | 
						
							| 5 | 4 | con1bid |  |-  ( ( _om e. On /\ x e. On ) -> ( -. _om C_ x <-> x e. _om ) ) | 
						
							| 6 |  | nnfi |  |-  ( x e. _om -> x e. Fin ) | 
						
							| 7 | 5 6 | biimtrdi |  |-  ( ( _om e. On /\ x e. On ) -> ( -. _om C_ x -> x e. Fin ) ) | 
						
							| 8 | 2 7 | mpan |  |-  ( x e. On -> ( -. _om C_ x -> x e. Fin ) ) | 
						
							| 9 | 8 | con1d |  |-  ( x e. On -> ( -. x e. Fin -> _om C_ x ) ) | 
						
							| 10 | 9 | imp |  |-  ( ( x e. On /\ -. x e. Fin ) -> _om C_ x ) | 
						
							| 11 | 1 10 | sylbi |  |-  ( x e. ( On \ Fin ) -> _om C_ x ) | 
						
							| 12 | 11 | rgen |  |-  A. x e. ( On \ Fin ) _om C_ x |