Metamath Proof Explorer


Theorem infordmin

Description: _om is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023)

Ref Expression
Assertion infordmin 𝑥 ∈ ( On ∖ Fin ) ω ⊆ 𝑥

Proof

Step Hyp Ref Expression
1 eldif ( 𝑥 ∈ ( On ∖ Fin ) ↔ ( 𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin ) )
2 omelon ω ∈ On
3 ontri1 ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω ) )
4 3 bicomd ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ¬ 𝑥 ∈ ω ↔ ω ⊆ 𝑥 ) )
5 4 con1bid ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ¬ ω ⊆ 𝑥𝑥 ∈ ω ) )
6 nnfi ( 𝑥 ∈ ω → 𝑥 ∈ Fin )
7 5 6 syl6bi ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ¬ ω ⊆ 𝑥𝑥 ∈ Fin ) )
8 2 7 mpan ( 𝑥 ∈ On → ( ¬ ω ⊆ 𝑥𝑥 ∈ Fin ) )
9 8 con1d ( 𝑥 ∈ On → ( ¬ 𝑥 ∈ Fin → ω ⊆ 𝑥 ) )
10 9 imp ( ( 𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin ) → ω ⊆ 𝑥 )
11 1 10 sylbi ( 𝑥 ∈ ( On ∖ Fin ) → ω ⊆ 𝑥 )
12 11 rgen 𝑥 ∈ ( On ∖ Fin ) ω ⊆ 𝑥