Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝑥 ∈ ( On ∖ Fin ) ↔ ( 𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin ) ) |
2 |
|
omelon |
⊢ ω ∈ On |
3 |
|
ontri1 |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω ) ) |
4 |
3
|
bicomd |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ¬ 𝑥 ∈ ω ↔ ω ⊆ 𝑥 ) ) |
5 |
4
|
con1bid |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ¬ ω ⊆ 𝑥 ↔ 𝑥 ∈ ω ) ) |
6 |
|
nnfi |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ Fin ) |
7 |
5 6
|
syl6bi |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ¬ ω ⊆ 𝑥 → 𝑥 ∈ Fin ) ) |
8 |
2 7
|
mpan |
⊢ ( 𝑥 ∈ On → ( ¬ ω ⊆ 𝑥 → 𝑥 ∈ Fin ) ) |
9 |
8
|
con1d |
⊢ ( 𝑥 ∈ On → ( ¬ 𝑥 ∈ Fin → ω ⊆ 𝑥 ) ) |
10 |
9
|
imp |
⊢ ( ( 𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin ) → ω ⊆ 𝑥 ) |
11 |
1 10
|
sylbi |
⊢ ( 𝑥 ∈ ( On ∖ Fin ) → ω ⊆ 𝑥 ) |
12 |
11
|
rgen |
⊢ ∀ 𝑥 ∈ ( On ∖ Fin ) ω ⊆ 𝑥 |