| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif | ⊢ ( 𝑥  ∈  ( On  ∖  Fin )  ↔  ( 𝑥  ∈  On  ∧  ¬  𝑥  ∈  Fin ) ) | 
						
							| 2 |  | omelon | ⊢ ω  ∈  On | 
						
							| 3 |  | ontri1 | ⊢ ( ( ω  ∈  On  ∧  𝑥  ∈  On )  →  ( ω  ⊆  𝑥  ↔  ¬  𝑥  ∈  ω ) ) | 
						
							| 4 | 3 | bicomd | ⊢ ( ( ω  ∈  On  ∧  𝑥  ∈  On )  →  ( ¬  𝑥  ∈  ω  ↔  ω  ⊆  𝑥 ) ) | 
						
							| 5 | 4 | con1bid | ⊢ ( ( ω  ∈  On  ∧  𝑥  ∈  On )  →  ( ¬  ω  ⊆  𝑥  ↔  𝑥  ∈  ω ) ) | 
						
							| 6 |  | nnfi | ⊢ ( 𝑥  ∈  ω  →  𝑥  ∈  Fin ) | 
						
							| 7 | 5 6 | biimtrdi | ⊢ ( ( ω  ∈  On  ∧  𝑥  ∈  On )  →  ( ¬  ω  ⊆  𝑥  →  𝑥  ∈  Fin ) ) | 
						
							| 8 | 2 7 | mpan | ⊢ ( 𝑥  ∈  On  →  ( ¬  ω  ⊆  𝑥  →  𝑥  ∈  Fin ) ) | 
						
							| 9 | 8 | con1d | ⊢ ( 𝑥  ∈  On  →  ( ¬  𝑥  ∈  Fin  →  ω  ⊆  𝑥 ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( 𝑥  ∈  On  ∧  ¬  𝑥  ∈  Fin )  →  ω  ⊆  𝑥 ) | 
						
							| 11 | 1 10 | sylbi | ⊢ ( 𝑥  ∈  ( On  ∖  Fin )  →  ω  ⊆  𝑥 ) | 
						
							| 12 | 11 | rgen | ⊢ ∀ 𝑥  ∈  ( On  ∖  Fin ) ω  ⊆  𝑥 |