Step |
Hyp |
Ref |
Expression |
1 |
|
eqcom |
|- ( ( card ` A ) = A <-> A = ( card ` A ) ) |
2 |
|
mptrel |
|- Rel ( x e. _V |-> |^| { y e. On | y ~~ x } ) |
3 |
|
df-card |
|- card = ( x e. _V |-> |^| { y e. On | y ~~ x } ) |
4 |
3
|
releqi |
|- ( Rel card <-> Rel ( x e. _V |-> |^| { y e. On | y ~~ x } ) ) |
5 |
2 4
|
mpbir |
|- Rel card |
6 |
|
relelrnb |
|- ( Rel card -> ( A e. ran card <-> E. x x card A ) ) |
7 |
5 6
|
ax-mp |
|- ( A e. ran card <-> E. x x card A ) |
8 |
3
|
funmpt2 |
|- Fun card |
9 |
|
funbrfv |
|- ( Fun card -> ( x card A -> ( card ` x ) = A ) ) |
10 |
8 9
|
ax-mp |
|- ( x card A -> ( card ` x ) = A ) |
11 |
10
|
eqcomd |
|- ( x card A -> A = ( card ` x ) ) |
12 |
11
|
eximi |
|- ( E. x x card A -> E. x A = ( card ` x ) ) |
13 |
|
cardidm |
|- ( card ` ( card ` x ) ) = ( card ` x ) |
14 |
|
fveq2 |
|- ( A = ( card ` x ) -> ( card ` A ) = ( card ` ( card ` x ) ) ) |
15 |
|
id |
|- ( A = ( card ` x ) -> A = ( card ` x ) ) |
16 |
13 14 15
|
3eqtr4a |
|- ( A = ( card ` x ) -> ( card ` A ) = A ) |
17 |
16
|
exlimiv |
|- ( E. x A = ( card ` x ) -> ( card ` A ) = A ) |
18 |
1
|
biimpi |
|- ( ( card ` A ) = A -> A = ( card ` A ) ) |
19 |
|
cardon |
|- ( card ` A ) e. On |
20 |
18 19
|
eqeltrdi |
|- ( ( card ` A ) = A -> A e. On ) |
21 |
|
onenon |
|- ( A e. On -> A e. dom card ) |
22 |
20 21
|
syl |
|- ( ( card ` A ) = A -> A e. dom card ) |
23 |
|
funfvbrb |
|- ( Fun card -> ( A e. dom card <-> A card ( card ` A ) ) ) |
24 |
23
|
biimpd |
|- ( Fun card -> ( A e. dom card -> A card ( card ` A ) ) ) |
25 |
8 22 24
|
mpsyl |
|- ( ( card ` A ) = A -> A card ( card ` A ) ) |
26 |
|
id |
|- ( ( card ` A ) = A -> ( card ` A ) = A ) |
27 |
25 26
|
breqtrd |
|- ( ( card ` A ) = A -> A card A ) |
28 |
|
id |
|- ( A = ( card ` A ) -> A = ( card ` A ) ) |
29 |
28 19
|
eqeltrdi |
|- ( A = ( card ` A ) -> A e. On ) |
30 |
29
|
eqcoms |
|- ( ( card ` A ) = A -> A e. On ) |
31 |
|
sbcbr1g |
|- ( A e. On -> ( [. A / x ]. x card A <-> [_ A / x ]_ x card A ) ) |
32 |
|
csbvarg |
|- ( A e. On -> [_ A / x ]_ x = A ) |
33 |
32
|
breq1d |
|- ( A e. On -> ( [_ A / x ]_ x card A <-> A card A ) ) |
34 |
31 33
|
bitrd |
|- ( A e. On -> ( [. A / x ]. x card A <-> A card A ) ) |
35 |
30 34
|
syl |
|- ( ( card ` A ) = A -> ( [. A / x ]. x card A <-> A card A ) ) |
36 |
27 35
|
mpbird |
|- ( ( card ` A ) = A -> [. A / x ]. x card A ) |
37 |
36
|
spesbcd |
|- ( ( card ` A ) = A -> E. x x card A ) |
38 |
17 37
|
syl |
|- ( E. x A = ( card ` x ) -> E. x x card A ) |
39 |
12 38
|
impbii |
|- ( E. x x card A <-> E. x A = ( card ` x ) ) |
40 |
|
oncard |
|- ( E. x A = ( card ` x ) <-> A = ( card ` A ) ) |
41 |
7 39 40
|
3bitrri |
|- ( A = ( card ` A ) <-> A e. ran card ) |
42 |
1 41
|
bitri |
|- ( ( card ` A ) = A <-> A e. ran card ) |