| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldif |
|- ( A e. ( ran card \ _om ) <-> ( A e. ran card /\ -. A e. _om ) ) |
| 2 |
|
omelon |
|- _om e. On |
| 3 |
|
cardon |
|- ( card ` A ) e. On |
| 4 |
|
eleq1 |
|- ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) ) |
| 5 |
3 4
|
mpbii |
|- ( ( card ` A ) = A -> A e. On ) |
| 6 |
|
ontri1 |
|- ( ( _om e. On /\ A e. On ) -> ( _om C_ A <-> -. A e. _om ) ) |
| 7 |
2 5 6
|
sylancr |
|- ( ( card ` A ) = A -> ( _om C_ A <-> -. A e. _om ) ) |
| 8 |
7
|
pm5.32i |
|- ( ( ( card ` A ) = A /\ _om C_ A ) <-> ( ( card ` A ) = A /\ -. A e. _om ) ) |
| 9 |
|
iscard4 |
|- ( ( card ` A ) = A <-> A e. ran card ) |
| 10 |
9
|
anbi1i |
|- ( ( ( card ` A ) = A /\ -. A e. _om ) <-> ( A e. ran card /\ -. A e. _om ) ) |
| 11 |
8 10
|
bitr2i |
|- ( ( A e. ran card /\ -. A e. _om ) <-> ( ( card ` A ) = A /\ _om C_ A ) ) |
| 12 |
|
ancom |
|- ( ( ( card ` A ) = A /\ _om C_ A ) <-> ( _om C_ A /\ ( card ` A ) = A ) ) |
| 13 |
1 11 12
|
3bitri |
|- ( A e. ( ran card \ _om ) <-> ( _om C_ A /\ ( card ` A ) = A ) ) |
| 14 |
13
|
biimpi |
|- ( A e. ( ran card \ _om ) -> ( _om C_ A /\ ( card ` A ) = A ) ) |
| 15 |
|
cardalephex |
|- ( _om C_ A -> ( ( card ` A ) = A <-> E. x e. On A = ( aleph ` x ) ) ) |
| 16 |
15
|
biimpa |
|- ( ( _om C_ A /\ ( card ` A ) = A ) -> E. x e. On A = ( aleph ` x ) ) |
| 17 |
|
eqimss |
|- ( A = ( aleph ` x ) -> A C_ ( aleph ` x ) ) |
| 18 |
17
|
a1i |
|- ( ( _om C_ A /\ ( card ` A ) = A ) -> ( A = ( aleph ` x ) -> A C_ ( aleph ` x ) ) ) |
| 19 |
18
|
reximdv |
|- ( ( _om C_ A /\ ( card ` A ) = A ) -> ( E. x e. On A = ( aleph ` x ) -> E. x e. On A C_ ( aleph ` x ) ) ) |
| 20 |
16 19
|
mpd |
|- ( ( _om C_ A /\ ( card ` A ) = A ) -> E. x e. On A C_ ( aleph ` x ) ) |
| 21 |
|
onintrab2 |
|- ( E. x e. On A C_ ( aleph ` x ) <-> |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
| 22 |
20 21
|
sylib |
|- ( ( _om C_ A /\ ( card ` A ) = A ) -> |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
| 23 |
|
simpr |
|- ( ( ( _om C_ A /\ ( card ` A ) = A ) /\ |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
| 24 |
|
onsuc |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } e. On -> suc |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
| 25 |
23 24
|
syl |
|- ( ( ( _om C_ A /\ ( card ` A ) = A ) /\ |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> suc |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
| 26 |
|
eloni |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } e. On -> Ord |^| { x e. On | A C_ ( aleph ` x ) } ) |
| 27 |
23 26
|
syl |
|- ( ( ( _om C_ A /\ ( card ` A ) = A ) /\ |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> Ord |^| { x e. On | A C_ ( aleph ` x ) } ) |
| 28 |
|
0elsuc |
|- ( Ord |^| { x e. On | A C_ ( aleph ` x ) } -> (/) e. suc |^| { x e. On | A C_ ( aleph ` x ) } ) |
| 29 |
27 28
|
syl |
|- ( ( ( _om C_ A /\ ( card ` A ) = A ) /\ |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> (/) e. suc |^| { x e. On | A C_ ( aleph ` x ) } ) |
| 30 |
|
cardaleph |
|- ( ( _om C_ A /\ ( card ` A ) = A ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 31 |
30
|
adantr |
|- ( ( ( _om C_ A /\ ( card ` A ) = A ) /\ |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 32 |
|
sssucid |
|- |^| { x e. On | A C_ ( aleph ` x ) } C_ suc |^| { x e. On | A C_ ( aleph ` x ) } |
| 33 |
|
alephord3 |
|- ( ( |^| { x e. On | A C_ ( aleph ` x ) } e. On /\ suc |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> ( |^| { x e. On | A C_ ( aleph ` x ) } C_ suc |^| { x e. On | A C_ ( aleph ` x ) } <-> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 34 |
23 24 33
|
syl2anc2 |
|- ( ( ( _om C_ A /\ ( card ` A ) = A ) /\ |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> ( |^| { x e. On | A C_ ( aleph ` x ) } C_ suc |^| { x e. On | A C_ ( aleph ` x ) } <-> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 35 |
32 34
|
mpbii |
|- ( ( ( _om C_ A /\ ( card ` A ) = A ) /\ |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 36 |
31 35
|
eqsstrd |
|- ( ( ( _om C_ A /\ ( card ` A ) = A ) /\ |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> A C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 37 |
|
alephreg |
|- ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) |
| 38 |
37
|
a1i |
|- ( ( ( _om C_ A /\ ( card ` A ) = A ) /\ |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 39 |
29 36 38
|
3jca |
|- ( ( ( _om C_ A /\ ( card ` A ) = A ) /\ |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> ( (/) e. suc |^| { x e. On | A C_ ( aleph ` x ) } /\ A C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 40 |
25 39
|
jca |
|- ( ( ( _om C_ A /\ ( card ` A ) = A ) /\ |^| { x e. On | A C_ ( aleph ` x ) } e. On ) -> ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On /\ ( (/) e. suc |^| { x e. On | A C_ ( aleph ` x ) } /\ A C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) ) |
| 41 |
14 22 40
|
syl2anc2 |
|- ( A e. ( ran card \ _om ) -> ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On /\ ( (/) e. suc |^| { x e. On | A C_ ( aleph ` x ) } /\ A C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) ) |
| 42 |
14 16
|
syl |
|- ( A e. ( ran card \ _om ) -> E. x e. On A = ( aleph ` x ) ) |
| 43 |
17
|
a1i |
|- ( A e. ( ran card \ _om ) -> ( A = ( aleph ` x ) -> A C_ ( aleph ` x ) ) ) |
| 44 |
43
|
reximdv |
|- ( A e. ( ran card \ _om ) -> ( E. x e. On A = ( aleph ` x ) -> E. x e. On A C_ ( aleph ` x ) ) ) |
| 45 |
42 44
|
mpd |
|- ( A e. ( ran card \ _om ) -> E. x e. On A C_ ( aleph ` x ) ) |
| 46 |
45 21
|
sylib |
|- ( A e. ( ran card \ _om ) -> |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
| 47 |
46 24
|
syl |
|- ( A e. ( ran card \ _om ) -> suc |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
| 48 |
|
sbcan |
|- ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( y e. On /\ ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) ) <-> ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. y e. On /\ [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) ) ) |
| 49 |
|
sbcel1v |
|- ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. y e. On <-> suc |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
| 50 |
49
|
a1i |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. y e. On <-> suc |^| { x e. On | A C_ ( aleph ` x ) } e. On ) ) |
| 51 |
|
sbc3an |
|- ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) <-> ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. (/) e. y /\ [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. A C_ ( aleph ` y ) /\ [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) ) |
| 52 |
|
sbcel2gv |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. (/) e. y <-> (/) e. suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 53 |
|
sbcssg |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. A C_ ( aleph ` y ) <-> [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ A C_ [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( aleph ` y ) ) ) |
| 54 |
|
csbconstg |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ A = A ) |
| 55 |
|
csbfv2g |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( aleph ` y ) = ( aleph ` [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ y ) ) |
| 56 |
|
csbvarg |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ y = suc |^| { x e. On | A C_ ( aleph ` x ) } ) |
| 57 |
56
|
fveq2d |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( aleph ` [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ y ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 58 |
55 57
|
eqtrd |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( aleph ` y ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 59 |
54 58
|
sseq12d |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ A C_ [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( aleph ` y ) <-> A C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 60 |
53 59
|
bitrd |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. A C_ ( aleph ` y ) <-> A C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 61 |
|
sbceqg |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( cf ` ( aleph ` y ) ) = ( aleph ` y ) <-> [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( cf ` ( aleph ` y ) ) = [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( aleph ` y ) ) ) |
| 62 |
|
csbfv2g |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( cf ` ( aleph ` y ) ) = ( cf ` [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( aleph ` y ) ) ) |
| 63 |
58
|
fveq2d |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( cf ` [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( aleph ` y ) ) = ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 64 |
62 63
|
eqtrd |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( cf ` ( aleph ` y ) ) = ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 65 |
64 58
|
eqeq12d |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( cf ` ( aleph ` y ) ) = [_ suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]_ ( aleph ` y ) <-> ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 66 |
61 65
|
bitrd |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( cf ` ( aleph ` y ) ) = ( aleph ` y ) <-> ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 67 |
52 60 66
|
3anbi123d |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. (/) e. y /\ [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. A C_ ( aleph ` y ) /\ [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) <-> ( (/) e. suc |^| { x e. On | A C_ ( aleph ` x ) } /\ A C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) ) |
| 68 |
51 67
|
bitrid |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) <-> ( (/) e. suc |^| { x e. On | A C_ ( aleph ` x ) } /\ A C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) ) |
| 69 |
50 68
|
anbi12d |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. y e. On /\ [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) ) <-> ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On /\ ( (/) e. suc |^| { x e. On | A C_ ( aleph ` x ) } /\ A C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) ) ) |
| 70 |
48 69
|
bitrid |
|- ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( y e. On /\ ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) ) <-> ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On /\ ( (/) e. suc |^| { x e. On | A C_ ( aleph ` x ) } /\ A C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) ) ) |
| 71 |
47 70
|
syl |
|- ( A e. ( ran card \ _om ) -> ( [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( y e. On /\ ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) ) <-> ( suc |^| { x e. On | A C_ ( aleph ` x ) } e. On /\ ( (/) e. suc |^| { x e. On | A C_ ( aleph ` x ) } /\ A C_ ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( cf ` ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) = ( aleph ` suc |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) ) ) |
| 72 |
41 71
|
mpbird |
|- ( A e. ( ran card \ _om ) -> [. suc |^| { x e. On | A C_ ( aleph ` x ) } / y ]. ( y e. On /\ ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) ) ) |
| 73 |
72
|
spesbcd |
|- ( A e. ( ran card \ _om ) -> E. y ( y e. On /\ ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) ) ) |
| 74 |
|
onintrab2 |
|- ( E. y e. On ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) <-> |^| { y e. On | ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } e. On ) |
| 75 |
|
df-rex |
|- ( E. y e. On ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) <-> E. y ( y e. On /\ ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) ) ) |
| 76 |
|
risset |
|- ( |^| { y e. On | ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } e. On <-> E. x e. On x = |^| { y e. On | ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } ) |
| 77 |
74 75 76
|
3bitr3i |
|- ( E. y ( y e. On /\ ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) ) <-> E. x e. On x = |^| { y e. On | ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } ) |
| 78 |
73 77
|
sylib |
|- ( A e. ( ran card \ _om ) -> E. x e. On x = |^| { y e. On | ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } ) |