| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minregex |
|- ( A e. ( ran card \ _om ) -> E. x e. On x = |^| { y e. On | ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } ) |
| 2 |
|
eldifi |
|- ( A e. ( ran card \ _om ) -> A e. ran card ) |
| 3 |
|
iscard4 |
|- ( ( card ` A ) = A <-> A e. ran card ) |
| 4 |
2 3
|
sylibr |
|- ( A e. ( ran card \ _om ) -> ( card ` A ) = A ) |
| 5 |
4
|
adantr |
|- ( ( A e. ( ran card \ _om ) /\ y e. On ) -> ( card ` A ) = A ) |
| 6 |
|
alephcard |
|- ( card ` ( aleph ` y ) ) = ( aleph ` y ) |
| 7 |
6
|
a1i |
|- ( ( A e. ( ran card \ _om ) /\ y e. On ) -> ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) |
| 8 |
5 7
|
sseq12d |
|- ( ( A e. ( ran card \ _om ) /\ y e. On ) -> ( ( card ` A ) C_ ( card ` ( aleph ` y ) ) <-> A C_ ( aleph ` y ) ) ) |
| 9 |
|
numth3 |
|- ( A e. ( ran card \ _om ) -> A e. dom card ) |
| 10 |
|
alephon |
|- ( aleph ` y ) e. On |
| 11 |
|
onenon |
|- ( ( aleph ` y ) e. On -> ( aleph ` y ) e. dom card ) |
| 12 |
10 11
|
mp1i |
|- ( y e. On -> ( aleph ` y ) e. dom card ) |
| 13 |
|
carddom2 |
|- ( ( A e. dom card /\ ( aleph ` y ) e. dom card ) -> ( ( card ` A ) C_ ( card ` ( aleph ` y ) ) <-> A ~<_ ( aleph ` y ) ) ) |
| 14 |
9 12 13
|
syl2an |
|- ( ( A e. ( ran card \ _om ) /\ y e. On ) -> ( ( card ` A ) C_ ( card ` ( aleph ` y ) ) <-> A ~<_ ( aleph ` y ) ) ) |
| 15 |
8 14
|
bitr3d |
|- ( ( A e. ( ran card \ _om ) /\ y e. On ) -> ( A C_ ( aleph ` y ) <-> A ~<_ ( aleph ` y ) ) ) |
| 16 |
15
|
3anbi2d |
|- ( ( A e. ( ran card \ _om ) /\ y e. On ) -> ( ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) <-> ( (/) e. y /\ A ~<_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) ) ) |
| 17 |
16
|
rabbidva |
|- ( A e. ( ran card \ _om ) -> { y e. On | ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } = { y e. On | ( (/) e. y /\ A ~<_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } ) |
| 18 |
17
|
inteqd |
|- ( A e. ( ran card \ _om ) -> |^| { y e. On | ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } = |^| { y e. On | ( (/) e. y /\ A ~<_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } ) |
| 19 |
18
|
eqeq2d |
|- ( A e. ( ran card \ _om ) -> ( x = |^| { y e. On | ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } <-> x = |^| { y e. On | ( (/) e. y /\ A ~<_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } ) ) |
| 20 |
19
|
rexbidv |
|- ( A e. ( ran card \ _om ) -> ( E. x e. On x = |^| { y e. On | ( (/) e. y /\ A C_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } <-> E. x e. On x = |^| { y e. On | ( (/) e. y /\ A ~<_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } ) ) |
| 21 |
1 20
|
mpbid |
|- ( A e. ( ran card \ _om ) -> E. x e. On x = |^| { y e. On | ( (/) e. y /\ A ~<_ ( aleph ` y ) /\ ( cf ` ( aleph ` y ) ) = ( aleph ` y ) ) } ) |