Metamath Proof Explorer


Theorem iscard5

Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023)

Ref Expression
Assertion iscard5
|- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A -. x ~~ A ) )

Proof

Step Hyp Ref Expression
1 iscard
 |-  ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A x ~< A ) )
2 sdomnen
 |-  ( x ~< A -> -. x ~~ A )
3 onelss
 |-  ( A e. On -> ( x e. A -> x C_ A ) )
4 ssdomg
 |-  ( A e. On -> ( x C_ A -> x ~<_ A ) )
5 3 4 syld
 |-  ( A e. On -> ( x e. A -> x ~<_ A ) )
6 5 imp
 |-  ( ( A e. On /\ x e. A ) -> x ~<_ A )
7 brsdom
 |-  ( x ~< A <-> ( x ~<_ A /\ -. x ~~ A ) )
8 7 biimpri
 |-  ( ( x ~<_ A /\ -. x ~~ A ) -> x ~< A )
9 8 a1i
 |-  ( ( A e. On /\ x e. A ) -> ( ( x ~<_ A /\ -. x ~~ A ) -> x ~< A ) )
10 6 9 mpand
 |-  ( ( A e. On /\ x e. A ) -> ( -. x ~~ A -> x ~< A ) )
11 2 10 impbid2
 |-  ( ( A e. On /\ x e. A ) -> ( x ~< A <-> -. x ~~ A ) )
12 11 ralbidva
 |-  ( A e. On -> ( A. x e. A x ~< A <-> A. x e. A -. x ~~ A ) )
13 12 pm5.32i
 |-  ( ( A e. On /\ A. x e. A x ~< A ) <-> ( A e. On /\ A. x e. A -. x ~~ A ) )
14 1 13 bitri
 |-  ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A -. x ~~ A ) )