Step |
Hyp |
Ref |
Expression |
1 |
|
iscard |
|- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A x ~< A ) ) |
2 |
|
sdomnen |
|- ( x ~< A -> -. x ~~ A ) |
3 |
|
onelss |
|- ( A e. On -> ( x e. A -> x C_ A ) ) |
4 |
|
ssdomg |
|- ( A e. On -> ( x C_ A -> x ~<_ A ) ) |
5 |
3 4
|
syld |
|- ( A e. On -> ( x e. A -> x ~<_ A ) ) |
6 |
5
|
imp |
|- ( ( A e. On /\ x e. A ) -> x ~<_ A ) |
7 |
|
brsdom |
|- ( x ~< A <-> ( x ~<_ A /\ -. x ~~ A ) ) |
8 |
7
|
biimpri |
|- ( ( x ~<_ A /\ -. x ~~ A ) -> x ~< A ) |
9 |
8
|
a1i |
|- ( ( A e. On /\ x e. A ) -> ( ( x ~<_ A /\ -. x ~~ A ) -> x ~< A ) ) |
10 |
6 9
|
mpand |
|- ( ( A e. On /\ x e. A ) -> ( -. x ~~ A -> x ~< A ) ) |
11 |
2 10
|
impbid2 |
|- ( ( A e. On /\ x e. A ) -> ( x ~< A <-> -. x ~~ A ) ) |
12 |
11
|
ralbidva |
|- ( A e. On -> ( A. x e. A x ~< A <-> A. x e. A -. x ~~ A ) ) |
13 |
12
|
pm5.32i |
|- ( ( A e. On /\ A. x e. A x ~< A ) <-> ( A e. On /\ A. x e. A -. x ~~ A ) ) |
14 |
1 13
|
bitri |
|- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A -. x ~~ A ) ) |