Metamath Proof Explorer


Theorem iscard5

Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023)

Ref Expression
Assertion iscard5 cardA=AAOnxA¬xA

Proof

Step Hyp Ref Expression
1 iscard cardA=AAOnxAxA
2 sdomnen xA¬xA
3 onelss AOnxAxA
4 ssdomg AOnxAxA
5 3 4 syld AOnxAxA
6 5 imp AOnxAxA
7 brsdom xAxA¬xA
8 7 biimpri xA¬xAxA
9 8 a1i AOnxAxA¬xAxA
10 6 9 mpand AOnxA¬xAxA
11 2 10 impbid2 AOnxAxA¬xA
12 11 ralbidva AOnxAxAxA¬xA
13 12 pm5.32i AOnxAxAAOnxA¬xA
14 1 13 bitri cardA=AAOnxA¬xA