Metamath Proof Explorer


Theorem iscard5

Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023)

Ref Expression
Assertion iscard5 ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥𝐴 ¬ 𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 iscard ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥𝐴 𝑥𝐴 ) )
2 sdomnen ( 𝑥𝐴 → ¬ 𝑥𝐴 )
3 onelss ( 𝐴 ∈ On → ( 𝑥𝐴𝑥𝐴 ) )
4 ssdomg ( 𝐴 ∈ On → ( 𝑥𝐴𝑥𝐴 ) )
5 3 4 syld ( 𝐴 ∈ On → ( 𝑥𝐴𝑥𝐴 ) )
6 5 imp ( ( 𝐴 ∈ On ∧ 𝑥𝐴 ) → 𝑥𝐴 )
7 brsdom ( 𝑥𝐴 ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐴 ) )
8 7 biimpri ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐴 ) → 𝑥𝐴 )
9 8 a1i ( ( 𝐴 ∈ On ∧ 𝑥𝐴 ) → ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐴 ) → 𝑥𝐴 ) )
10 6 9 mpand ( ( 𝐴 ∈ On ∧ 𝑥𝐴 ) → ( ¬ 𝑥𝐴𝑥𝐴 ) )
11 2 10 impbid2 ( ( 𝐴 ∈ On ∧ 𝑥𝐴 ) → ( 𝑥𝐴 ↔ ¬ 𝑥𝐴 ) )
12 11 ralbidva ( 𝐴 ∈ On → ( ∀ 𝑥𝐴 𝑥𝐴 ↔ ∀ 𝑥𝐴 ¬ 𝑥𝐴 ) )
13 12 pm5.32i ( ( 𝐴 ∈ On ∧ ∀ 𝑥𝐴 𝑥𝐴 ) ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥𝐴 ¬ 𝑥𝐴 ) )
14 1 13 bitri ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥𝐴 ¬ 𝑥𝐴 ) )