Step |
Hyp |
Ref |
Expression |
1 |
|
iscard |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ) ) |
2 |
|
sdomnen |
⊢ ( 𝑥 ≺ 𝐴 → ¬ 𝑥 ≈ 𝐴 ) |
3 |
|
onelss |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
4 |
|
ssdomg |
⊢ ( 𝐴 ∈ On → ( 𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴 ) ) |
5 |
3 4
|
syld |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ 𝐴 → 𝑥 ≼ 𝐴 ) ) |
6 |
5
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≼ 𝐴 ) |
7 |
|
brsdom |
⊢ ( 𝑥 ≺ 𝐴 ↔ ( 𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴 ) ) |
8 |
7
|
biimpri |
⊢ ( ( 𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴 ) → 𝑥 ≺ 𝐴 ) |
9 |
8
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴 ) → 𝑥 ≺ 𝐴 ) ) |
10 |
6 9
|
mpand |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ≈ 𝐴 → 𝑥 ≺ 𝐴 ) ) |
11 |
2 10
|
impbid2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≺ 𝐴 ↔ ¬ 𝑥 ≈ 𝐴 ) ) |
12 |
11
|
ralbidva |
⊢ ( 𝐴 ∈ On → ( ∀ 𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴 ) ) |
13 |
12
|
pm5.32i |
⊢ ( ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ) ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴 ) ) |
14 |
1 13
|
bitri |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴 ) ) |