Metamath Proof Explorer


Theorem minregex

Description: Given any cardinal number A , there exists an argument x , which yields the least regular uncountable value of aleph which is greater to or equal to A . This proof uses AC. (Contributed by RP, 23-Nov-2023)

Ref Expression
Assertion minregex ( 𝐴 ∈ ( ran card ∖ ω ) → ∃ 𝑥 ∈ On 𝑥 = { 𝑦 ∈ On ∣ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) } )

Proof

Step Hyp Ref Expression
1 eldif ( 𝐴 ∈ ( ran card ∖ ω ) ↔ ( 𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω ) )
2 omelon ω ∈ On
3 cardon ( card ‘ 𝐴 ) ∈ On
4 eleq1 ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ∈ On ↔ 𝐴 ∈ On ) )
5 3 4 mpbii ( ( card ‘ 𝐴 ) = 𝐴𝐴 ∈ On )
6 ontri1 ( ( ω ∈ On ∧ 𝐴 ∈ On ) → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) )
7 2 5 6 sylancr ( ( card ‘ 𝐴 ) = 𝐴 → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) )
8 7 pm5.32i ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) ↔ ( ( card ‘ 𝐴 ) = 𝐴 ∧ ¬ 𝐴 ∈ ω ) )
9 iscard4 ( ( card ‘ 𝐴 ) = 𝐴𝐴 ∈ ran card )
10 9 anbi1i ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ¬ 𝐴 ∈ ω ) ↔ ( 𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω ) )
11 8 10 bitr2i ( ( 𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω ) ↔ ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) )
12 ancom ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) ↔ ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) )
13 1 11 12 3bitri ( 𝐴 ∈ ( ran card ∖ ω ) ↔ ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) )
14 13 biimpi ( 𝐴 ∈ ( ran card ∖ ω ) → ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) )
15 cardalephex ( ω ⊆ 𝐴 → ( ( card ‘ 𝐴 ) = 𝐴 ↔ ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) )
16 15 biimpa ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) )
17 eqimss ( 𝐴 = ( ℵ ‘ 𝑥 ) → 𝐴 ⊆ ( ℵ ‘ 𝑥 ) )
18 17 a1i ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ( 𝐴 = ( ℵ ‘ 𝑥 ) → 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) )
19 18 reximdv ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ( ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) )
20 16 19 mpd ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) )
21 onintrab2 ( ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ↔ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On )
22 20 21 sylib ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On )
23 simpr ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On )
24 onsuc ( { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On )
25 23 24 syl ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On )
26 eloni ( { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → Ord { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } )
27 23 26 syl ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → Ord { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } )
28 0elsuc ( Ord { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ∅ ∈ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } )
29 27 28 syl ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ∅ ∈ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } )
30 cardaleph ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → 𝐴 = ( ℵ ‘ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) )
31 30 adantr ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → 𝐴 = ( ℵ ‘ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) )
32 sssucid { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ⊆ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) }
33 alephord3 ( ( { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ⊆ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ↔ ( ℵ ‘ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) )
34 23 24 33 syl2anc2 ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ⊆ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ↔ ( ℵ ‘ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) )
35 32 34 mpbii ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( ℵ ‘ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) )
36 31 35 eqsstrd ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → 𝐴 ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) )
37 alephreg ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } )
38 37 a1i ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) )
39 29 36 38 3jca ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( ∅ ∈ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) )
40 25 39 jca ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ ( ∅ ∈ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) )
41 14 22 40 syl2anc2 ( 𝐴 ∈ ( ran card ∖ ω ) → ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ ( ∅ ∈ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) )
42 14 16 syl ( 𝐴 ∈ ( ran card ∖ ω ) → ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) )
43 17 a1i ( 𝐴 ∈ ( ran card ∖ ω ) → ( 𝐴 = ( ℵ ‘ 𝑥 ) → 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) )
44 43 reximdv ( 𝐴 ∈ ( ran card ∖ ω ) → ( ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) )
45 42 44 mpd ( 𝐴 ∈ ( ran card ∖ ω ) → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) )
46 45 21 sylib ( 𝐴 ∈ ( ran card ∖ ω ) → { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On )
47 46 24 syl ( 𝐴 ∈ ( ran card ∖ ω ) → suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On )
48 sbcan ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ↔ ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝑦 ∈ On ∧ [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) )
49 sbcel1v ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝑦 ∈ On ↔ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On )
50 49 a1i ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝑦 ∈ On ↔ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) )
51 sbc3an ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ↔ ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ∅ ∈ 𝑦[ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) )
52 sbcel2gv ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ∅ ∈ 𝑦 ↔ ∅ ∈ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) )
53 sbcssg ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ↔ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 𝐴 suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( ℵ ‘ 𝑦 ) ) )
54 csbconstg ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 𝐴 = 𝐴 )
55 csbfv2g ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( ℵ ‘ 𝑦 ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 𝑦 ) )
56 csbvarg ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 𝑦 = suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } )
57 56 fveq2d ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 𝑦 ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) )
58 55 57 eqtrd ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( ℵ ‘ 𝑦 ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) )
59 54 58 sseq12d ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 𝐴 suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( ℵ ‘ 𝑦 ) ↔ 𝐴 ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) )
60 53 59 bitrd ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ↔ 𝐴 ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) )
61 sbceqg ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ↔ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( cf ‘ ( ℵ ‘ 𝑦 ) ) = suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( ℵ ‘ 𝑦 ) ) )
62 csbfv2g ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( cf ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( ℵ ‘ 𝑦 ) ) )
63 58 fveq2d ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( cf ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( ℵ ‘ 𝑦 ) ) = ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) )
64 62 63 eqtrd ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) )
65 64 58 eqeq12d ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( cf ‘ ( ℵ ‘ 𝑦 ) ) = suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ( ℵ ‘ 𝑦 ) ↔ ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) )
66 61 65 bitrd ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ↔ ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) )
67 52 60 66 3anbi123d ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ∅ ∈ 𝑦[ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ↔ ( ∅ ∈ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) )
68 51 67 bitrid ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ↔ ( ∅ ∈ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) )
69 50 68 anbi12d ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝑦 ∈ On ∧ [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ↔ ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ ( ∅ ∈ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) )
70 48 69 bitrid ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ↔ ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ ( ∅ ∈ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) )
71 47 70 syl ( 𝐴 ∈ ( ran card ∖ ω ) → ( [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ↔ ( suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ ( ∅ ∈ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) )
72 41 71 mpbird ( 𝐴 ∈ ( ran card ∖ ω ) → [ suc { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) )
73 72 spesbcd ( 𝐴 ∈ ( ran card ∖ ω ) → ∃ 𝑦 ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) )
74 onintrab2 ( ∃ 𝑦 ∈ On ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ↔ { 𝑦 ∈ On ∣ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) } ∈ On )
75 df-rex ( ∃ 𝑦 ∈ On ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) )
76 risset ( { 𝑦 ∈ On ∣ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) } ∈ On ↔ ∃ 𝑥 ∈ On 𝑥 = { 𝑦 ∈ On ∣ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) } )
77 74 75 76 3bitr3i ( ∃ 𝑦 ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ↔ ∃ 𝑥 ∈ On 𝑥 = { 𝑦 ∈ On ∣ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) } )
78 73 77 sylib ( 𝐴 ∈ ( ran card ∖ ω ) → ∃ 𝑥 ∈ On 𝑥 = { 𝑦 ∈ On ∣ ( ∅ ∈ 𝑦𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) } )