| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldif |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) ↔ ( 𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω ) ) |
| 2 |
|
omelon |
⊢ ω ∈ On |
| 3 |
|
cardon |
⊢ ( card ‘ 𝐴 ) ∈ On |
| 4 |
|
eleq1 |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ∈ On ↔ 𝐴 ∈ On ) ) |
| 5 |
3 4
|
mpbii |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ On ) |
| 6 |
|
ontri1 |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ On ) → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) ) |
| 7 |
2 5 6
|
sylancr |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) ) |
| 8 |
7
|
pm5.32i |
⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) ↔ ( ( card ‘ 𝐴 ) = 𝐴 ∧ ¬ 𝐴 ∈ ω ) ) |
| 9 |
|
iscard4 |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ∈ ran card ) |
| 10 |
9
|
anbi1i |
⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ¬ 𝐴 ∈ ω ) ↔ ( 𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω ) ) |
| 11 |
8 10
|
bitr2i |
⊢ ( ( 𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω ) ↔ ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) ) |
| 12 |
|
ancom |
⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) ↔ ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ) |
| 13 |
1 11 12
|
3bitri |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) ↔ ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ) |
| 14 |
13
|
biimpi |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ) |
| 15 |
|
cardalephex |
⊢ ( ω ⊆ 𝐴 → ( ( card ‘ 𝐴 ) = 𝐴 ↔ ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) ) |
| 16 |
15
|
biimpa |
⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) |
| 17 |
|
eqimss |
⊢ ( 𝐴 = ( ℵ ‘ 𝑥 ) → 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) |
| 18 |
17
|
a1i |
⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ( 𝐴 = ( ℵ ‘ 𝑥 ) → 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) ) |
| 19 |
18
|
reximdv |
⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ( ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) ) |
| 20 |
16 19
|
mpd |
⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) |
| 21 |
|
onintrab2 |
⊢ ( ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) |
| 22 |
20 21
|
sylib |
⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) |
| 23 |
|
simpr |
⊢ ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) |
| 24 |
|
onsuc |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) |
| 25 |
23 24
|
syl |
⊢ ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) |
| 26 |
|
eloni |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → Ord ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 27 |
23 26
|
syl |
⊢ ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → Ord ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 28 |
|
0elsuc |
⊢ ( Ord ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ∅ ∈ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 29 |
27 28
|
syl |
⊢ ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ∅ ∈ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 30 |
|
cardaleph |
⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 31 |
30
|
adantr |
⊢ ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 32 |
|
sssucid |
⊢ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ⊆ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } |
| 33 |
|
alephord3 |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ⊆ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ↔ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 34 |
23 24 33
|
syl2anc2 |
⊢ ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ⊆ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ↔ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 35 |
32 34
|
mpbii |
⊢ ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 36 |
31 35
|
eqsstrd |
⊢ ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → 𝐴 ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 37 |
|
alephreg |
⊢ ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 38 |
37
|
a1i |
⊢ ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 39 |
29 36 38
|
3jca |
⊢ ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( ∅ ∈ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 40 |
25 39
|
jca |
⊢ ( ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) → ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ ( ∅ ∈ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) |
| 41 |
14 22 40
|
syl2anc2 |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ ( ∅ ∈ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) |
| 42 |
14 16
|
syl |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) |
| 43 |
17
|
a1i |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → ( 𝐴 = ( ℵ ‘ 𝑥 ) → 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) ) |
| 44 |
43
|
reximdv |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → ( ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) ) |
| 45 |
42 44
|
mpd |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) |
| 46 |
45 21
|
sylib |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) |
| 47 |
46 24
|
syl |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) |
| 48 |
|
sbcan |
⊢ ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ↔ ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝑦 ∈ On ∧ [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ) |
| 49 |
|
sbcel1v |
⊢ ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝑦 ∈ On ↔ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) |
| 50 |
49
|
a1i |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝑦 ∈ On ↔ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) ) |
| 51 |
|
sbc3an |
⊢ ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ↔ ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ∅ ∈ 𝑦 ∧ [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) |
| 52 |
|
sbcel2gv |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ∅ ∈ 𝑦 ↔ ∅ ∈ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 53 |
|
sbcssg |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ↔ ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ 𝐴 ⊆ ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( ℵ ‘ 𝑦 ) ) ) |
| 54 |
|
csbconstg |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ 𝐴 = 𝐴 ) |
| 55 |
|
csbfv2g |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( ℵ ‘ 𝑦 ) = ( ℵ ‘ ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ 𝑦 ) ) |
| 56 |
|
csbvarg |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ 𝑦 = suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 57 |
56
|
fveq2d |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( ℵ ‘ ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ 𝑦 ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 58 |
55 57
|
eqtrd |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( ℵ ‘ 𝑦 ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 59 |
54 58
|
sseq12d |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ 𝐴 ⊆ ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( ℵ ‘ 𝑦 ) ↔ 𝐴 ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 60 |
53 59
|
bitrd |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ↔ 𝐴 ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 61 |
|
sbceqg |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ↔ ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( ℵ ‘ 𝑦 ) ) ) |
| 62 |
|
csbfv2g |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( cf ‘ ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( ℵ ‘ 𝑦 ) ) ) |
| 63 |
58
|
fveq2d |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( cf ‘ ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( ℵ ‘ 𝑦 ) ) = ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 64 |
62 63
|
eqtrd |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 65 |
64 58
|
eqeq12d |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ⦋ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ⦌ ( ℵ ‘ 𝑦 ) ↔ ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 66 |
61 65
|
bitrd |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ↔ ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 67 |
52 60 66
|
3anbi123d |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ∅ ∈ 𝑦 ∧ [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ↔ ( ∅ ∈ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) |
| 68 |
51 67
|
bitrid |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ↔ ( ∅ ∈ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) |
| 69 |
50 68
|
anbi12d |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] 𝑦 ∈ On ∧ [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ↔ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ ( ∅ ∈ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) ) |
| 70 |
48 69
|
bitrid |
⊢ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ↔ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ ( ∅ ∈ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) ) |
| 71 |
47 70
|
syl |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → ( [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ↔ ( suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ ( ∅ ∈ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∧ 𝐴 ⊆ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( cf ‘ ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) = ( ℵ ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) ) |
| 72 |
41 71
|
mpbird |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → [ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } / 𝑦 ] ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ) |
| 73 |
72
|
spesbcd |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → ∃ 𝑦 ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ) |
| 74 |
|
onintrab2 |
⊢ ( ∃ 𝑦 ∈ On ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ↔ ∩ { 𝑦 ∈ On ∣ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) } ∈ On ) |
| 75 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ On ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ) |
| 76 |
|
risset |
⊢ ( ∩ { 𝑦 ∈ On ∣ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) } ∈ On ↔ ∃ 𝑥 ∈ On 𝑥 = ∩ { 𝑦 ∈ On ∣ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) } ) |
| 77 |
74 75 76
|
3bitr3i |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ On ∧ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) ) ↔ ∃ 𝑥 ∈ On 𝑥 = ∩ { 𝑦 ∈ On ∣ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) } ) |
| 78 |
73 77
|
sylib |
⊢ ( 𝐴 ∈ ( ran card ∖ ω ) → ∃ 𝑥 ∈ On 𝑥 = ∩ { 𝑦 ∈ On ∣ ( ∅ ∈ 𝑦 ∧ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( cf ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) ) } ) |