Metamath Proof Explorer


Theorem dfom6

Description: Let _om be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023)

Ref Expression
Assertion dfom6 ω=OnFin

Proof

Step Hyp Ref Expression
1 limom Limω
2 limuni Limωω=ω
3 1 2 ax-mp ω=ω
4 onfin2 ω=OnFin
5 4 unieqi ω=OnFin
6 3 5 eqtri ω=OnFin