Description: Let _om be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfom6 | ⊢ ω = ∪ ( On ∩ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limom | ⊢ Lim ω | |
| 2 | limuni | ⊢ ( Lim ω → ω = ∪ ω ) | |
| 3 | 1 2 | ax-mp | ⊢ ω = ∪ ω |
| 4 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 5 | 4 | unieqi | ⊢ ∪ ω = ∪ ( On ∩ Fin ) |
| 6 | 3 5 | eqtri | ⊢ ω = ∪ ( On ∩ Fin ) |