Metamath Proof Explorer


Theorem tr3dom

Description: An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023)

Ref Expression
Assertion tr3dom { 𝐴 , 𝐵 , 𝐶 } ≼ 3o

Proof

Step Hyp Ref Expression
1 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
2 prex { 𝐴 , 𝐵 } ∈ V
3 snex { 𝐶 } ∈ V
4 undjudom ( ( { 𝐴 , 𝐵 } ∈ V ∧ { 𝐶 } ∈ V ) → ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ≼ ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) )
5 2 3 4 mp2an ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ≼ ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } )
6 pr2dom { 𝐴 , 𝐵 } ≼ 2o
7 djudom1 ( ( { 𝐴 , 𝐵 } ≼ 2o ∧ { 𝐶 } ∈ V ) → ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ { 𝐶 } ) )
8 6 3 7 mp2an ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ { 𝐶 } )
9 sn1dom { 𝐶 } ≼ 1o
10 2on 2o ∈ On
11 djudom2 ( ( { 𝐶 } ≼ 1o ∧ 2o ∈ On ) → ( 2o ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o ) )
12 9 10 11 mp2an ( 2o ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o )
13 domtr ( ( ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ { 𝐶 } ) ∧ ( 2o ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o ) ) → ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o ) )
14 8 12 13 mp2an ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o )
15 1on 1o ∈ On
16 onadju ( ( 2o ∈ On ∧ 1o ∈ On ) → ( 2o +o 1o ) ≈ ( 2o ⊔ 1o ) )
17 10 15 16 mp2an ( 2o +o 1o ) ≈ ( 2o ⊔ 1o )
18 17 ensymi ( 2o ⊔ 1o ) ≈ ( 2o +o 1o )
19 oa1suc ( 2o ∈ On → ( 2o +o 1o ) = suc 2o )
20 10 19 ax-mp ( 2o +o 1o ) = suc 2o
21 df-3o 3o = suc 2o
22 20 21 eqtr4i ( 2o +o 1o ) = 3o
23 18 22 breqtri ( 2o ⊔ 1o ) ≈ 3o
24 domentr ( ( ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o ) ∧ ( 2o ⊔ 1o ) ≈ 3o ) → ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ 3o )
25 14 23 24 mp2an ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ 3o
26 domtr ( ( ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ≼ ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ∧ ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ 3o ) → ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ≼ 3o )
27 5 25 26 mp2an ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ≼ 3o
28 1 27 eqbrtri { 𝐴 , 𝐵 , 𝐶 } ≼ 3o