| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-tp |
⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) |
| 2 |
|
prex |
⊢ { 𝐴 , 𝐵 } ∈ V |
| 3 |
|
snex |
⊢ { 𝐶 } ∈ V |
| 4 |
|
undjudom |
⊢ ( ( { 𝐴 , 𝐵 } ∈ V ∧ { 𝐶 } ∈ V ) → ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ≼ ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ) |
| 5 |
2 3 4
|
mp2an |
⊢ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ≼ ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) |
| 6 |
|
pr2dom |
⊢ { 𝐴 , 𝐵 } ≼ 2o |
| 7 |
|
djudom1 |
⊢ ( ( { 𝐴 , 𝐵 } ≼ 2o ∧ { 𝐶 } ∈ V ) → ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ { 𝐶 } ) ) |
| 8 |
6 3 7
|
mp2an |
⊢ ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ { 𝐶 } ) |
| 9 |
|
sn1dom |
⊢ { 𝐶 } ≼ 1o |
| 10 |
|
2on |
⊢ 2o ∈ On |
| 11 |
|
djudom2 |
⊢ ( ( { 𝐶 } ≼ 1o ∧ 2o ∈ On ) → ( 2o ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o ) ) |
| 12 |
9 10 11
|
mp2an |
⊢ ( 2o ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o ) |
| 13 |
|
domtr |
⊢ ( ( ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ { 𝐶 } ) ∧ ( 2o ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o ) ) → ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o ) ) |
| 14 |
8 12 13
|
mp2an |
⊢ ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o ) |
| 15 |
|
1on |
⊢ 1o ∈ On |
| 16 |
|
onadju |
⊢ ( ( 2o ∈ On ∧ 1o ∈ On ) → ( 2o +o 1o ) ≈ ( 2o ⊔ 1o ) ) |
| 17 |
10 15 16
|
mp2an |
⊢ ( 2o +o 1o ) ≈ ( 2o ⊔ 1o ) |
| 18 |
17
|
ensymi |
⊢ ( 2o ⊔ 1o ) ≈ ( 2o +o 1o ) |
| 19 |
|
oa1suc |
⊢ ( 2o ∈ On → ( 2o +o 1o ) = suc 2o ) |
| 20 |
10 19
|
ax-mp |
⊢ ( 2o +o 1o ) = suc 2o |
| 21 |
|
df-3o |
⊢ 3o = suc 2o |
| 22 |
20 21
|
eqtr4i |
⊢ ( 2o +o 1o ) = 3o |
| 23 |
18 22
|
breqtri |
⊢ ( 2o ⊔ 1o ) ≈ 3o |
| 24 |
|
domentr |
⊢ ( ( ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ ( 2o ⊔ 1o ) ∧ ( 2o ⊔ 1o ) ≈ 3o ) → ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ 3o ) |
| 25 |
14 23 24
|
mp2an |
⊢ ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ 3o |
| 26 |
|
domtr |
⊢ ( ( ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ≼ ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ∧ ( { 𝐴 , 𝐵 } ⊔ { 𝐶 } ) ≼ 3o ) → ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ≼ 3o ) |
| 27 |
5 25 26
|
mp2an |
⊢ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ≼ 3o |
| 28 |
1 27
|
eqbrtri |
⊢ { 𝐴 , 𝐵 , 𝐶 } ≼ 3o |