Metamath Proof Explorer


Theorem snhesn

Description: Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020)

Ref Expression
Assertion snhesn A A hereditary B

Proof

Step Hyp Ref Expression
1 vex x V
2 1 elima3 x A A B y y B y x A A
3 velsn x B x = B
4 2 3 imbi12i x A A B x B y y B y x A A x = B
5 4 albii x x A A B x B x y y B y x A A x = B
6 velsn y B y = B
7 opex y x V
8 7 elsn y x A A y x = A A
9 vex y V
10 9 1 opth y x = A A y = A x = A
11 8 10 bitri y x A A y = A x = A
12 6 11 anbi12i y B y x A A y = B y = A x = A
13 3anass y = B y = A x = A y = B y = A x = A
14 12 13 bitr4i y B y x A A y = B y = A x = A
15 simp3 y = B y = A x = A x = A
16 simp2 y = B y = A x = A y = A
17 simp1 y = B y = A x = A y = B
18 15 16 17 3eqtr2d y = B y = A x = A x = B
19 14 18 sylbi y B y x A A x = B
20 19 exlimiv y y B y x A A x = B
21 5 20 mpgbir x x A A B x B
22 dfss2 A A B B x x A A B x B
23 21 22 mpbir A A B B
24 df-he A A hereditary B A A B B
25 23 24 mpbir A A hereditary B