Metamath Proof Explorer


Theorem snhesn

Description: Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020)

Ref Expression
Assertion snhesn AAhereditaryB

Proof

Step Hyp Ref Expression
1 vex xV
2 1 elima3 xAAByyByxAA
3 velsn xBx=B
4 2 3 imbi12i xAABxByyByxAAx=B
5 4 albii xxAABxBxyyByxAAx=B
6 velsn yBy=B
7 opex yxV
8 7 elsn yxAAyx=AA
9 vex yV
10 9 1 opth yx=AAy=Ax=A
11 8 10 bitri yxAAy=Ax=A
12 6 11 anbi12i yByxAAy=By=Ax=A
13 3anass y=By=Ax=Ay=By=Ax=A
14 12 13 bitr4i yByxAAy=By=Ax=A
15 simp3 y=By=Ax=Ax=A
16 simp2 y=By=Ax=Ay=A
17 simp1 y=By=Ax=Ay=B
18 15 16 17 3eqtr2d y=By=Ax=Ax=B
19 14 18 sylbi yByxAAx=B
20 19 exlimiv yyByxAAx=B
21 5 20 mpgbir xxAABxB
22 dfss2 AABBxxAABxB
23 21 22 mpbir AABB
24 df-he AAhereditaryBAABB
25 23 24 mpbir AAhereditaryB