Metamath Proof Explorer


Theorem so0

Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion so0 ROr

Proof

Step Hyp Ref Expression
1 po0 RPo
2 ral0 xyxRyx=yyRx
3 df-so ROrRPoxyxRyx=yyRx
4 1 2 3 mpbir2an ROr