Metamath Proof Explorer


Theorem so2nr

Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion so2nr ROrABACA¬BRCCRB

Proof

Step Hyp Ref Expression
1 sopo ROrARPoA
2 po2nr RPoABACA¬BRCCRB
3 1 2 sylan ROrABACA¬BRCCRB