Metamath Proof Explorer


Theorem soeq1

Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997)

Ref Expression
Assertion soeq1 R=SROrASOrA

Proof

Step Hyp Ref Expression
1 poeq1 R=SRPoASPoA
2 breq R=SxRyxSy
3 biidd R=Sx=yx=y
4 breq R=SyRxySx
5 2 3 4 3orbi123d R=SxRyx=yyRxxSyx=yySx
6 5 2ralbidv R=SxAyAxRyx=yyRxxAyAxSyx=yySx
7 1 6 anbi12d R=SRPoAxAyAxRyx=yyRxSPoAxAyAxSyx=yySx
8 df-so ROrARPoAxAyAxRyx=yyRx
9 df-so SOrASPoAxAyAxSyx=yySx
10 7 8 9 3bitr4g R=SROrASOrA