Metamath Proof Explorer


Theorem sonr

Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995)

Ref Expression
Assertion sonr ROrABA¬BRB

Proof

Step Hyp Ref Expression
1 sopo ROrARPoA
2 poirr RPoABA¬BRB
3 1 2 sylan ROrABA¬BRB