Metamath Proof Explorer


Theorem spcedv

Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020) (Revised by AV, 16-Aug-2024)

Ref Expression
Hypotheses spcedv.1 φXV
spcedv.2 φχ
spcedv.3 x=Xψχ
Assertion spcedv φxψ

Proof

Step Hyp Ref Expression
1 spcedv.1 φXV
2 spcedv.2 φχ
3 spcedv.3 x=Xψχ
4 3 spcegv XVχxψ
5 1 2 4 sylc φxψ