Metamath Proof Explorer


Theorem spcgv

Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by NM, 22-Jun-1994) Avoid ax-10 , ax-11 . (Revised by Wolf Lammen, 25-Aug-2023)

Ref Expression
Hypothesis spcgv.1 x=Aφψ
Assertion spcgv AVxφψ

Proof

Step Hyp Ref Expression
1 spcgv.1 x=Aφψ
2 elex AVAV
3 id AVAV
4 1 adantl AVx=Aφψ
5 3 4 spcdv AVxφψ
6 2 5 syl AVxφψ