Metamath Proof Explorer


Theorem spimed

Description: Deduction version of spime . (Contributed by NM, 14-May-1993) (Revised by Mario Carneiro, 3-Oct-2016) (Proof shortened by Wolf Lammen, 19-Feb-2018) Usage of this theorem is discouraged because it depends on ax-13 . Use spimedv instead. (New usage is discouraged.)

Ref Expression
Hypotheses spimed.1 χxφ
spimed.2 x=yφψ
Assertion spimed χφxψ

Proof

Step Hyp Ref Expression
1 spimed.1 χxφ
2 spimed.2 x=yφψ
3 1 nf5rd χφxφ
4 ax6e xx=y
5 4 2 eximii xφψ
6 5 19.35i xφxψ
7 3 6 syl6 χφxψ