Metamath Proof Explorer


Theorem sq0i

Description: If a number is zero, then its square is zero. (Contributed by FL, 10-Dec-2006)

Ref Expression
Assertion sq0i A=0A2=0

Proof

Step Hyp Ref Expression
1 oveq1 A=0A2=02
2 sq0 02=0
3 1 2 eqtrdi A=0A2=0