Metamath Proof Explorer


Theorem sqeqori

Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of Gleason p. 311 and its converse. (Contributed by NM, 15-Jan-2006)

Ref Expression
Hypotheses binom2.1 A
binom2.2 B
Assertion sqeqori A2=B2A=BA=B

Proof

Step Hyp Ref Expression
1 binom2.1 A
2 binom2.2 B
3 1 2 subsqi A2B2=A+BAB
4 3 eqeq1i A2B2=0A+BAB=0
5 1 sqcli A2
6 2 sqcli B2
7 5 6 subeq0i A2B2=0A2=B2
8 1 2 addcli A+B
9 1 2 subcli AB
10 8 9 mul0ori A+BAB=0A+B=0AB=0
11 4 7 10 3bitr3i A2=B2A+B=0AB=0
12 orcom A+B=0AB=0AB=0A+B=0
13 1 2 subeq0i AB=0A=B
14 1 2 subnegi AB=A+B
15 14 eqeq1i AB=0A+B=0
16 2 negcli B
17 1 16 subeq0i AB=0A=B
18 15 17 bitr3i A+B=0A=B
19 13 18 orbi12i AB=0A+B=0A=BA=B
20 11 12 19 3bitri A2=B2A=BA=B