Metamath Proof Explorer


Theorem sqneg

Description: The square of the negative of a number. (Contributed by NM, 15-Jan-2006)

Ref Expression
Assertion sqneg AA2=A2

Proof

Step Hyp Ref Expression
1 mul2neg AAAA=AA
2 1 anidms AAA=AA
3 negcl AA
4 sqval AA2=AA
5 3 4 syl AA2=AA
6 sqval AA2=AA
7 2 5 6 3eqtr4d AA2=A2