Metamath Proof Explorer


Theorem sqr11d

Description: The square root function is one-to-one. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses resqrcld.1 φA
resqrcld.2 φ0A
sqr11d.3 φB
sqr11d.4 φ0B
sqrt11d.5 φA=B
Assertion sqr11d φA=B

Proof

Step Hyp Ref Expression
1 resqrcld.1 φA
2 resqrcld.2 φ0A
3 sqr11d.3 φB
4 sqr11d.4 φ0B
5 sqrt11d.5 φA=B
6 sqrt11 A0AB0BA=BA=B
7 1 2 3 4 6 syl22anc φA=BA=B
8 5 7 mpbid φA=B