Metamath Proof Explorer


Theorem sqrtdivd

Description: Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses resqrcld.1 φA
resqrcld.2 φ0A
sqrdivd.3 φB+
Assertion sqrtdivd φAB=AB

Proof

Step Hyp Ref Expression
1 resqrcld.1 φA
2 resqrcld.2 φ0A
3 sqrdivd.3 φB+
4 sqrtdiv A0AB+AB=AB
5 1 2 3 4 syl21anc φAB=AB