Description: Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resqrcld.1 | |- ( ph -> A e. RR ) |
|
| resqrcld.2 | |- ( ph -> 0 <_ A ) |
||
| sqrdivd.3 | |- ( ph -> B e. RR+ ) |
||
| Assertion | sqrtdivd | |- ( ph -> ( sqrt ` ( A / B ) ) = ( ( sqrt ` A ) / ( sqrt ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrcld.1 | |- ( ph -> A e. RR ) |
|
| 2 | resqrcld.2 | |- ( ph -> 0 <_ A ) |
|
| 3 | sqrdivd.3 | |- ( ph -> B e. RR+ ) |
|
| 4 | sqrtdiv | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( A / B ) ) = ( ( sqrt ` A ) / ( sqrt ` B ) ) ) |
|
| 5 | 1 2 3 4 | syl21anc | |- ( ph -> ( sqrt ` ( A / B ) ) = ( ( sqrt ` A ) / ( sqrt ` B ) ) ) |