| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rerpdivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
| 2 |
1
|
adantlr |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( A / B ) e. RR ) |
| 3 |
|
elrp |
|- ( B e. RR+ <-> ( B e. RR /\ 0 < B ) ) |
| 4 |
|
divge0 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 <_ ( A / B ) ) |
| 5 |
3 4
|
sylan2b |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> 0 <_ ( A / B ) ) |
| 6 |
|
resqrtcl |
|- ( ( ( A / B ) e. RR /\ 0 <_ ( A / B ) ) -> ( sqrt ` ( A / B ) ) e. RR ) |
| 7 |
2 5 6
|
syl2anc |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( A / B ) ) e. RR ) |
| 8 |
7
|
recnd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( A / B ) ) e. CC ) |
| 9 |
|
rpsqrtcl |
|- ( B e. RR+ -> ( sqrt ` B ) e. RR+ ) |
| 10 |
9
|
adantl |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` B ) e. RR+ ) |
| 11 |
10
|
rpcnd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` B ) e. CC ) |
| 12 |
10
|
rpne0d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` B ) =/= 0 ) |
| 13 |
8 11 12
|
divcan4d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( ( ( sqrt ` ( A / B ) ) x. ( sqrt ` B ) ) / ( sqrt ` B ) ) = ( sqrt ` ( A / B ) ) ) |
| 14 |
|
rprege0 |
|- ( B e. RR+ -> ( B e. RR /\ 0 <_ B ) ) |
| 15 |
14
|
adantl |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( B e. RR /\ 0 <_ B ) ) |
| 16 |
|
sqrtmul |
|- ( ( ( ( A / B ) e. RR /\ 0 <_ ( A / B ) ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( sqrt ` ( ( A / B ) x. B ) ) = ( ( sqrt ` ( A / B ) ) x. ( sqrt ` B ) ) ) |
| 17 |
2 5 15 16
|
syl21anc |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( ( A / B ) x. B ) ) = ( ( sqrt ` ( A / B ) ) x. ( sqrt ` B ) ) ) |
| 18 |
|
simpll |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> A e. RR ) |
| 19 |
18
|
recnd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> A e. CC ) |
| 20 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
| 21 |
20
|
adantl |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> B e. CC ) |
| 22 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
| 23 |
22
|
adantl |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> B =/= 0 ) |
| 24 |
19 21 23
|
divcan1d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( ( A / B ) x. B ) = A ) |
| 25 |
24
|
fveq2d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( ( A / B ) x. B ) ) = ( sqrt ` A ) ) |
| 26 |
17 25
|
eqtr3d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( ( sqrt ` ( A / B ) ) x. ( sqrt ` B ) ) = ( sqrt ` A ) ) |
| 27 |
26
|
oveq1d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( ( ( sqrt ` ( A / B ) ) x. ( sqrt ` B ) ) / ( sqrt ` B ) ) = ( ( sqrt ` A ) / ( sqrt ` B ) ) ) |
| 28 |
13 27
|
eqtr3d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( A / B ) ) = ( ( sqrt ` A ) / ( sqrt ` B ) ) ) |