Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|- _i e. CC |
2 |
|
resqrtcl |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
3 |
|
recn |
|- ( ( sqrt ` A ) e. RR -> ( sqrt ` A ) e. CC ) |
4 |
2 3
|
syl |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. CC ) |
5 |
|
sqmul |
|- ( ( _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) ) |
6 |
1 4 5
|
sylancr |
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) ) |
7 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
8 |
7
|
a1i |
|- ( ( A e. RR /\ 0 <_ A ) -> ( _i ^ 2 ) = -u 1 ) |
9 |
|
resqrtth |
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
10 |
8 9
|
oveq12d |
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) = ( -u 1 x. A ) ) |
11 |
|
recn |
|- ( A e. RR -> A e. CC ) |
12 |
11
|
adantr |
|- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
13 |
12
|
mulm1d |
|- ( ( A e. RR /\ 0 <_ A ) -> ( -u 1 x. A ) = -u A ) |
14 |
6 10 13
|
3eqtrd |
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A ) |
15 |
|
renegcl |
|- ( ( sqrt ` A ) e. RR -> -u ( sqrt ` A ) e. RR ) |
16 |
|
0re |
|- 0 e. RR |
17 |
|
reim0 |
|- ( -u ( sqrt ` A ) e. RR -> ( Im ` -u ( sqrt ` A ) ) = 0 ) |
18 |
|
recn |
|- ( -u ( sqrt ` A ) e. RR -> -u ( sqrt ` A ) e. CC ) |
19 |
|
imre |
|- ( -u ( sqrt ` A ) e. CC -> ( Im ` -u ( sqrt ` A ) ) = ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
20 |
18 19
|
syl |
|- ( -u ( sqrt ` A ) e. RR -> ( Im ` -u ( sqrt ` A ) ) = ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
21 |
17 20
|
eqtr3d |
|- ( -u ( sqrt ` A ) e. RR -> 0 = ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
22 |
|
eqle |
|- ( ( 0 e. RR /\ 0 = ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) -> 0 <_ ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
23 |
16 21 22
|
sylancr |
|- ( -u ( sqrt ` A ) e. RR -> 0 <_ ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
24 |
2 15 23
|
3syl |
|- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
25 |
|
mul2neg |
|- ( ( _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( -u _i x. -u ( sqrt ` A ) ) = ( _i x. ( sqrt ` A ) ) ) |
26 |
1 4 25
|
sylancr |
|- ( ( A e. RR /\ 0 <_ A ) -> ( -u _i x. -u ( sqrt ` A ) ) = ( _i x. ( sqrt ` A ) ) ) |
27 |
26
|
fveq2d |
|- ( ( A e. RR /\ 0 <_ A ) -> ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) = ( Re ` ( _i x. ( sqrt ` A ) ) ) ) |
28 |
24 27
|
breqtrd |
|- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) ) |
29 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
30 |
29
|
oveq1i |
|- ( ( _i x. _i ) x. ( sqrt ` A ) ) = ( -u 1 x. ( sqrt ` A ) ) |
31 |
|
mulass |
|- ( ( _i e. CC /\ _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( ( _i x. _i ) x. ( sqrt ` A ) ) = ( _i x. ( _i x. ( sqrt ` A ) ) ) ) |
32 |
1 1 31
|
mp3an12 |
|- ( ( sqrt ` A ) e. CC -> ( ( _i x. _i ) x. ( sqrt ` A ) ) = ( _i x. ( _i x. ( sqrt ` A ) ) ) ) |
33 |
|
mulm1 |
|- ( ( sqrt ` A ) e. CC -> ( -u 1 x. ( sqrt ` A ) ) = -u ( sqrt ` A ) ) |
34 |
30 32 33
|
3eqtr3a |
|- ( ( sqrt ` A ) e. CC -> ( _i x. ( _i x. ( sqrt ` A ) ) ) = -u ( sqrt ` A ) ) |
35 |
4 34
|
syl |
|- ( ( A e. RR /\ 0 <_ A ) -> ( _i x. ( _i x. ( sqrt ` A ) ) ) = -u ( sqrt ` A ) ) |
36 |
|
sqrtge0 |
|- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( sqrt ` A ) ) |
37 |
|
le0neg2 |
|- ( ( sqrt ` A ) e. RR -> ( 0 <_ ( sqrt ` A ) <-> -u ( sqrt ` A ) <_ 0 ) ) |
38 |
|
lenlt |
|- ( ( -u ( sqrt ` A ) e. RR /\ 0 e. RR ) -> ( -u ( sqrt ` A ) <_ 0 <-> -. 0 < -u ( sqrt ` A ) ) ) |
39 |
15 16 38
|
sylancl |
|- ( ( sqrt ` A ) e. RR -> ( -u ( sqrt ` A ) <_ 0 <-> -. 0 < -u ( sqrt ` A ) ) ) |
40 |
37 39
|
bitrd |
|- ( ( sqrt ` A ) e. RR -> ( 0 <_ ( sqrt ` A ) <-> -. 0 < -u ( sqrt ` A ) ) ) |
41 |
2 40
|
syl |
|- ( ( A e. RR /\ 0 <_ A ) -> ( 0 <_ ( sqrt ` A ) <-> -. 0 < -u ( sqrt ` A ) ) ) |
42 |
36 41
|
mpbid |
|- ( ( A e. RR /\ 0 <_ A ) -> -. 0 < -u ( sqrt ` A ) ) |
43 |
|
elrp |
|- ( -u ( sqrt ` A ) e. RR+ <-> ( -u ( sqrt ` A ) e. RR /\ 0 < -u ( sqrt ` A ) ) ) |
44 |
2 15
|
syl |
|- ( ( A e. RR /\ 0 <_ A ) -> -u ( sqrt ` A ) e. RR ) |
45 |
44
|
biantrurd |
|- ( ( A e. RR /\ 0 <_ A ) -> ( 0 < -u ( sqrt ` A ) <-> ( -u ( sqrt ` A ) e. RR /\ 0 < -u ( sqrt ` A ) ) ) ) |
46 |
43 45
|
bitr4id |
|- ( ( A e. RR /\ 0 <_ A ) -> ( -u ( sqrt ` A ) e. RR+ <-> 0 < -u ( sqrt ` A ) ) ) |
47 |
42 46
|
mtbird |
|- ( ( A e. RR /\ 0 <_ A ) -> -. -u ( sqrt ` A ) e. RR+ ) |
48 |
35 47
|
eqneltrd |
|- ( ( A e. RR /\ 0 <_ A ) -> -. ( _i x. ( _i x. ( sqrt ` A ) ) ) e. RR+ ) |
49 |
|
df-nel |
|- ( ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ <-> -. ( _i x. ( _i x. ( sqrt ` A ) ) ) e. RR+ ) |
50 |
48 49
|
sylibr |
|- ( ( A e. RR /\ 0 <_ A ) -> ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) |
51 |
14 28 50
|
3jca |
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) |