Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
1
|
adantr |
|- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
3 |
2
|
negcld |
|- ( ( A e. RR /\ 0 <_ A ) -> -u A e. CC ) |
4 |
|
sqrtval |
|- ( -u A e. CC -> ( sqrt ` -u A ) = ( iota_ x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
5 |
3 4
|
syl |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` -u A ) = ( iota_ x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
6 |
|
sqrtneglem |
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) |
7 |
|
ax-icn |
|- _i e. CC |
8 |
|
resqrtcl |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
9 |
8
|
recnd |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. CC ) |
10 |
|
mulcl |
|- ( ( _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( _i x. ( sqrt ` A ) ) e. CC ) |
11 |
7 9 10
|
sylancr |
|- ( ( A e. RR /\ 0 <_ A ) -> ( _i x. ( sqrt ` A ) ) e. CC ) |
12 |
|
oveq1 |
|- ( x = ( _i x. ( sqrt ` A ) ) -> ( x ^ 2 ) = ( ( _i x. ( sqrt ` A ) ) ^ 2 ) ) |
13 |
12
|
eqeq1d |
|- ( x = ( _i x. ( sqrt ` A ) ) -> ( ( x ^ 2 ) = -u A <-> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A ) ) |
14 |
|
fveq2 |
|- ( x = ( _i x. ( sqrt ` A ) ) -> ( Re ` x ) = ( Re ` ( _i x. ( sqrt ` A ) ) ) ) |
15 |
14
|
breq2d |
|- ( x = ( _i x. ( sqrt ` A ) ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) ) ) |
16 |
|
oveq2 |
|- ( x = ( _i x. ( sqrt ` A ) ) -> ( _i x. x ) = ( _i x. ( _i x. ( sqrt ` A ) ) ) ) |
17 |
|
neleq1 |
|- ( ( _i x. x ) = ( _i x. ( _i x. ( sqrt ` A ) ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) |
18 |
16 17
|
syl |
|- ( x = ( _i x. ( sqrt ` A ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) |
19 |
13 15 18
|
3anbi123d |
|- ( x = ( _i x. ( sqrt ` A ) ) -> ( ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) ) |
20 |
19
|
rspcev |
|- ( ( ( _i x. ( sqrt ` A ) ) e. CC /\ ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) -> E. x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
21 |
11 6 20
|
syl2anc |
|- ( ( A e. RR /\ 0 <_ A ) -> E. x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
22 |
|
sqrmo |
|- ( -u A e. CC -> E* x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
23 |
3 22
|
syl |
|- ( ( A e. RR /\ 0 <_ A ) -> E* x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
24 |
|
reu5 |
|- ( E! x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( E. x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ E* x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
25 |
21 23 24
|
sylanbrc |
|- ( ( A e. RR /\ 0 <_ A ) -> E! x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
26 |
19
|
riota2 |
|- ( ( ( _i x. ( sqrt ` A ) ) e. CC /\ E! x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> ( ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( _i x. ( sqrt ` A ) ) ) ) |
27 |
11 25 26
|
syl2anc |
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( _i x. ( sqrt ` A ) ) ) ) |
28 |
6 27
|
mpbid |
|- ( ( A e. RR /\ 0 <_ A ) -> ( iota_ x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( _i x. ( sqrt ` A ) ) ) |
29 |
5 28
|
eqtrd |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` -u A ) = ( _i x. ( sqrt ` A ) ) ) |