| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr1 |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x ^ 2 ) = A ) |
| 2 |
|
simprr1 |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( y ^ 2 ) = A ) |
| 3 |
1 2
|
eqtr4d |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x ^ 2 ) = ( y ^ 2 ) ) |
| 4 |
|
sqeqor |
|- ( ( x e. CC /\ y e. CC ) -> ( ( x ^ 2 ) = ( y ^ 2 ) <-> ( x = y \/ x = -u y ) ) ) |
| 5 |
4
|
ad2ant2r |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( ( x ^ 2 ) = ( y ^ 2 ) <-> ( x = y \/ x = -u y ) ) ) |
| 6 |
3 5
|
mpbid |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x = y \/ x = -u y ) ) |
| 7 |
6
|
ord |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> x = -u y ) ) |
| 8 |
|
3simpc |
|- ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> ( 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 9 |
|
fveq2 |
|- ( x = -u y -> ( Re ` x ) = ( Re ` -u y ) ) |
| 10 |
9
|
breq2d |
|- ( x = -u y -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` -u y ) ) ) |
| 11 |
|
oveq2 |
|- ( x = -u y -> ( _i x. x ) = ( _i x. -u y ) ) |
| 12 |
|
neleq1 |
|- ( ( _i x. x ) = ( _i x. -u y ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. -u y ) e/ RR+ ) ) |
| 13 |
11 12
|
syl |
|- ( x = -u y -> ( ( _i x. x ) e/ RR+ <-> ( _i x. -u y ) e/ RR+ ) ) |
| 14 |
10 13
|
anbi12d |
|- ( x = -u y -> ( ( 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 15 |
8 14
|
syl5ibcom |
|- ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> ( x = -u y -> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 16 |
15
|
ad2antlr |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x = -u y -> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 17 |
7 16
|
syld |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 18 |
|
negeq |
|- ( y = 0 -> -u y = -u 0 ) |
| 19 |
|
neg0 |
|- -u 0 = 0 |
| 20 |
18 19
|
eqtrdi |
|- ( y = 0 -> -u y = 0 ) |
| 21 |
20
|
eqeq2d |
|- ( y = 0 -> ( x = -u y <-> x = 0 ) ) |
| 22 |
|
eqeq2 |
|- ( y = 0 -> ( x = y <-> x = 0 ) ) |
| 23 |
21 22
|
bitr4d |
|- ( y = 0 -> ( x = -u y <-> x = y ) ) |
| 24 |
23
|
biimpcd |
|- ( x = -u y -> ( y = 0 -> x = y ) ) |
| 25 |
24
|
necon3bd |
|- ( x = -u y -> ( -. x = y -> y =/= 0 ) ) |
| 26 |
7 25
|
syli |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> y =/= 0 ) ) |
| 27 |
|
3simpc |
|- ( ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) -> ( 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) |
| 28 |
|
cnpart |
|- ( ( y e. CC /\ y =/= 0 ) -> ( ( 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) <-> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 29 |
27 28
|
imbitrid |
|- ( ( y e. CC /\ y =/= 0 ) -> ( ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 30 |
29
|
impancom |
|- ( ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> ( y =/= 0 -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 31 |
30
|
adantl |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( y =/= 0 -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 32 |
26 31
|
syld |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 33 |
17 32
|
pm2.65d |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> -. -. x = y ) |
| 34 |
33
|
notnotrd |
|- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> x = y ) |
| 35 |
34
|
an4s |
|- ( ( ( x e. CC /\ y e. CC ) /\ ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> x = y ) |
| 36 |
35
|
ex |
|- ( ( x e. CC /\ y e. CC ) -> ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) |
| 37 |
36
|
a1i |
|- ( A e. CC -> ( ( x e. CC /\ y e. CC ) -> ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) ) |
| 38 |
37
|
ralrimivv |
|- ( A e. CC -> A. x e. CC A. y e. CC ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) |
| 39 |
|
oveq1 |
|- ( x = y -> ( x ^ 2 ) = ( y ^ 2 ) ) |
| 40 |
39
|
eqeq1d |
|- ( x = y -> ( ( x ^ 2 ) = A <-> ( y ^ 2 ) = A ) ) |
| 41 |
|
fveq2 |
|- ( x = y -> ( Re ` x ) = ( Re ` y ) ) |
| 42 |
41
|
breq2d |
|- ( x = y -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` y ) ) ) |
| 43 |
|
oveq2 |
|- ( x = y -> ( _i x. x ) = ( _i x. y ) ) |
| 44 |
|
neleq1 |
|- ( ( _i x. x ) = ( _i x. y ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. y ) e/ RR+ ) ) |
| 45 |
43 44
|
syl |
|- ( x = y -> ( ( _i x. x ) e/ RR+ <-> ( _i x. y ) e/ RR+ ) ) |
| 46 |
40 42 45
|
3anbi123d |
|- ( x = y -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) |
| 47 |
46
|
rmo4 |
|- ( E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> A. x e. CC A. y e. CC ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) |
| 48 |
38 47
|
sylibr |
|- ( A e. CC -> E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |