Metamath Proof Explorer


Theorem sqrmo

Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013) (Revised by NM, 17-Jun-2017)

Ref Expression
Assertion sqrmo A*xx2=A0xix+

Proof

Step Hyp Ref Expression
1 simplr1 xx2=A0xix+yy2=A0yiy+x2=A
2 simprr1 xx2=A0xix+yy2=A0yiy+y2=A
3 1 2 eqtr4d xx2=A0xix+yy2=A0yiy+x2=y2
4 sqeqor xyx2=y2x=yx=y
5 4 ad2ant2r xx2=A0xix+yy2=A0yiy+x2=y2x=yx=y
6 3 5 mpbid xx2=A0xix+yy2=A0yiy+x=yx=y
7 6 ord xx2=A0xix+yy2=A0yiy+¬x=yx=y
8 3simpc x2=A0xix+0xix+
9 fveq2 x=yx=y
10 9 breq2d x=y0x0y
11 oveq2 x=yix=iy
12 neleq1 ix=iyix+iy+
13 11 12 syl x=yix+iy+
14 10 13 anbi12d x=y0xix+0yiy+
15 8 14 syl5ibcom x2=A0xix+x=y0yiy+
16 15 ad2antlr xx2=A0xix+yy2=A0yiy+x=y0yiy+
17 7 16 syld xx2=A0xix+yy2=A0yiy+¬x=y0yiy+
18 negeq y=0y=0
19 neg0 0=0
20 18 19 eqtrdi y=0y=0
21 20 eqeq2d y=0x=yx=0
22 eqeq2 y=0x=yx=0
23 21 22 bitr4d y=0x=yx=y
24 23 biimpcd x=yy=0x=y
25 24 necon3bd x=y¬x=yy0
26 7 25 syli xx2=A0xix+yy2=A0yiy+¬x=yy0
27 3simpc y2=A0yiy+0yiy+
28 cnpart yy00yiy+¬0yiy+
29 27 28 imbitrid yy0y2=A0yiy+¬0yiy+
30 29 impancom yy2=A0yiy+y0¬0yiy+
31 30 adantl xx2=A0xix+yy2=A0yiy+y0¬0yiy+
32 26 31 syld xx2=A0xix+yy2=A0yiy+¬x=y¬0yiy+
33 17 32 pm2.65d xx2=A0xix+yy2=A0yiy+¬¬x=y
34 33 notnotrd xx2=A0xix+yy2=A0yiy+x=y
35 34 an4s xyx2=A0xix+y2=A0yiy+x=y
36 35 ex xyx2=A0xix+y2=A0yiy+x=y
37 36 a1i Axyx2=A0xix+y2=A0yiy+x=y
38 37 ralrimivv Axyx2=A0xix+y2=A0yiy+x=y
39 oveq1 x=yx2=y2
40 39 eqeq1d x=yx2=Ay2=A
41 fveq2 x=yx=y
42 41 breq2d x=y0x0y
43 oveq2 x=yix=iy
44 neleq1 ix=iyix+iy+
45 43 44 syl x=yix+iy+
46 40 42 45 3anbi123d x=yx2=A0xix+y2=A0yiy+
47 46 rmo4 *xx2=A0xix+xyx2=A0xix+y2=A0yiy+x=y
48 38 47 sylibr A*xx2=A0xix+